EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling and Control of EGR on Marine Two Stroke Diesel Engines

Download or read book Modeling and Control of EGR on Marine Two Stroke Diesel Engines written by Xavier Llamas and published by Linköping University Electronic Press. This book was released on 2018-02-20 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt: The international marine shipping industry is responsible for the transport of around 90% of the total world trade. Low-speed two-stroke diesel engines usually propel the largest trading ships. This engine type choice is mainly motivated by its high fuel efficiency and the capacity to burn cheap low-quality fuels. To reduce the marine freight impact on the environment, the International Maritime Organization (IMO) has introduced stricter limits on the engine pollutant emissions. One of these new restrictions, named Tier III, sets the maximum NOx emissions permitted. New emission reduction technologies have to be developed to fulfill the Tier III limits on two-stroke engines since adjusting the engine combustion alone is not sufficient. There are several promising technologies to achieve the required NOx reductions, Exhaust Gas Recirculation (EGR) is one of them. For automotive applications, EGR is a mature technology, and many of the research findings can be used directly in marine applications. However, there are some differences in marine two-stroke engines, which require further development to apply and control EGR. The number of available engines for testing EGR controllers on ships and test beds is low due to the recent introduction of EGR. Hence, engine simulation models are a good alternative for developing controllers, and many different engine loading scenarios can be simulated without the high costs of running real engine tests. The primary focus of this thesis is the development and validation of models for two-stroke marine engines with EGR. The modeling follows a Mean Value Engine Model (MVEM) approach, which has a low computational complexity and permits faster than real-time simulations suitable for controller testing. A parameterization process that deals with the low measurement data availability, compared to the available data on automotive engines, is also investigated and described. As a result, the proposed model is parameterized to two different two-stroke engines showing a good agreement with the measurements in both stationary and dynamic conditions. Several engine components have been developed. One of these is a new analytic in-cylinder pressure model that captures the influence of the injection and exhaust valve timings without increasing the simulation time. A new compressor model that can extrapolate to low speeds and pressure ratios in a physically sound way is also described. This compressor model is a requirement to be able to simulate low engine loads. Moreover, a novel parameterization algorithm is shown to handle well the model nonlinearities and to obtain a good model agreement with a large number of tested compressor maps. Furthermore, the engine model is complemented with dynamic models for ship and propeller to be able to simulate transient sailing scenarios, where good EGR controller performance is crucial. The model is used to identify the low load area as the most challenging for the controller performance, due to the slower engine air path dynamics. Further low load simulations indicate that sensor bias can be problematic and lead to an undesired black smoke formation, while errors in the parameters of the controller flow estimators are not as critical. This result is valuable because for a newly built engine a proper sensor setup is more straightforward to verify than to get the right parameters for the flow estimators.

Book Modeling and Control of EGR on Marine Two stroke Diesel Engines

Download or read book Modeling and Control of EGR on Marine Two stroke Diesel Engines written by Xavier Llamas and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The international marine shipping industry is responsible for the transport of around 90% of the total world trade. Low-speed two-stroke diesel engines usually propel the largest trading ships. This engine type choice is mainly motivated by its high fuel efficiency and the capacity to burn cheap low-quality fuels. To reduce the marine freight impact on the environment, the International Maritime Organization (IMO) has introduced stricter limits on the engine pollutant emissions. One of these new restrictions, named Tier III, sets the maximum NOx emissions permitted. New emission reduction technologies have to be developed to fulfill the Tier III limits on two-stroke engines since adjusting the engine combustion alone is not sufficient. There are several promising technologies to achieve the required NOx reductions, Exhaust Gas Recirculation (EGR) is one of them. For automotive applications, EGR is a mature technology, and many of the research findings can be used directly in marine applications. However, there are some differences in marine two-stroke engines, which require further development to apply and control EGR. The number of available engines for testing EGR controllers on ships and test beds is low due to the recent introduction of EGR. Hence, engine simulation models are a good alternative for developing controllers, and many different engine loading scenarios can be simulated without the high costs of running real engine tests. The primary focus of this thesis is the development and validation of models for two-stroke marine engines with EGR. The modeling follows a Mean Value Engine Model (MVEM) approach, which has a low computational complexity and permits faster than real-time simulations suitable for controller testing. A parameterization process that deals with the low measurement data availability, compared to the available data on automotive engines, is also investigated and described. As a result, the proposed model is parameterized to two different two-stroke engines showing a good agreement with the measurements in both stationary and dynamic conditions. Several engine components have been developed. One of these is a new analytic in-cylinder pressure model that captures the influence of the injection and exhaust valve timings without increasing the simulation time. A new compressor model that can extrapolate to low speeds and pressure ratios in a physically sound way is also described. This compressor model is a requirement to be able to simulate low engine loads. Moreover, a novel parameterization algorithm is shown to handle well the model nonlinearities and to obtain a good model agreement with a large number of tested compressor maps. Furthermore, the engine model is complemented with dynamic models for ship and propeller to be able to simulate transient sailing scenarios, where good EGR controller performance is crucial. The model is used to identify the low load area as the most challenging for the controller performance, due to the slower engine air path dynamics. Further low load simulations indicate that sensor bias can be problematic and lead to an undesired black smoke formation, while errors in the parameters of the controller flow estimators are not as critical. This result is valuable because for a newly built engine a proper sensor setup is more straightforward to verify than to get the right parameters for the flow estimators.

Book Methods for Modeling the Dynamic Mass Flows in a Large Two stroke Diesel Engine with EGR

Download or read book Methods for Modeling the Dynamic Mass Flows in a Large Two stroke Diesel Engine with EGR written by Guillem Alegret Nadal and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this project different methods to model two-stroke diesel engines have been investigated. The goal of the project is to obtain a model capable to capture both the steady states and the transients of the engine system. The interest MAN Diesel&Turbo has in this model is to obtain a reliable simulation platform to be used as a tool to evaluate the performance of new control systems for the Exhaust Gas Recirculation (EGR) system. A non-linear model of the engine air-path with EGR is derived and validated against measurements. The specific engine corresponds to a 4T50ME-X located at MAN Diesel&Turbo research center. The model consists of the following components: the turbocharger, the scavenging and exhaust manifolds, the cylinders and the EGR system. The turbocharger model is externalized to an advance simulator software (GT-Power), all other components are modeled in Simulink. A Seiliger cycle capable of handling variable exhaust valve opening and closing is proposed. The polytropic coefficients for the compression and expansion are analytically estimated from in-cylinder pressure measurements. The model derived in this project is capable to fit well the measured data in steady states. The appropriate dynamics are obtained in transient operations, although the model shows a generalized faster response than the measured data.

Book Diesel Engine Transient Operation

Download or read book Diesel Engine Transient Operation written by Constantine D. Rakopoulos and published by Springer Science & Business Media. This book was released on 2009-03-10 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive and truck engines is inherently related to unsteady conditions. In fact, only a very small portion of a vehicle’s operating pattern is true steady-state, e. g. , when cruising on a motorway. Moreover, the most critical conditions encountered by industrial or marine engines are met during transients too. Unfortunately, the transient operation of turbocharged diesel engines has been associated with slow acceleration rate, hence poor driveability, and overshoot in particulate, gaseous and noise emissions. Despite the relatively large number of published papers, this very important subject has been treated in the past scarcely and only segmentally as regards reference books. Merely two chapters, one in the book Turbocharging the Internal Combustion Engine by N. Watson and M. S. Janota (McMillan Press, 1982) and another one written by D. E. Winterbone in the book The Thermodynamics and Gas Dynamics of Internal Combustion Engines, Vol. II edited by J. H. Horlock and D. E. Winterbone (Clarendon Press, 1986) are dedicated to transient operation. Both books, now out of print, were published a long time ago. Then, it seems reasonable to try to expand on these pioneering works, taking into account the recent technological advances and particularly the global concern about environmental pollution, which has intensified the research on transient (diesel) engine operation, typically through the Transient Cycles certification of new vehicles.

Book Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control

Download or read book Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control written by Dr.-Ing. David Blanco-Rodriguez and published by Springer. This book was released on 2014-05-19 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a complete new methodology for the on-board measurements and modeling of gas concentrations in turbocharged diesel engines. It provides the readers with a comprehensive review of the state-of-art in NOx and lambda estimation and describes new important achievements accomplished by the author. These include: the online characterization of lambda and NOx sensors; the development of control-oriented models of lambda and NOx emissions; the design of computationally efficient updating algorithms; and, finally, the application and evaluation of the methods on-board. Because of its technically oriented approach and innovative findings on both control-oriented algorithms and virtual sensing and observation, this book offers a practice-oriented guide for students, researchers and professionals working in the field of control and information engineering.

Book Model Based Control of Air and EGR Into a Diesel Engine

Download or read book Model Based Control of Air and EGR Into a Diesel Engine written by and published by . This book was released on 2008 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Manufacturing Processes II

Download or read book Advanced Manufacturing Processes II written by Volodymyr Tonkonogyi and published by Springer Nature. This book was released on 2021-02-04 with total page 868 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a timely yet comprehensive snapshot of innovative research and developments at the interface between manufacturing, materials and mechanical engineering, and quality assurance. It covers a wide range of manufacturing processes, such as cutting, grinding, assembly, and coatings, including ultrasonic treatment, molding, radial-isostatic compression, ionic-plasma deposition, volumetric vibration treatment, and wear resistance. It also highlights the advantages of augmented reality, RFID technology, reverse engineering, optimization, heat and mass transfer, energy management, quality inspection, and environmental impact. Based on selected papers presented at the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2020), held in Odessa, Ukraine, on September 8–11, 2020, this book offers a timely overview and extensive information on trends and technologies in production planning, design engineering, advanced materials, machining processes, process engineering, and quality assurance. It is also intended to facilitate communication and collaboration between different groups working on similar topics and offer a bridge between academic and industrial researchers.

Book Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control

Download or read book Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control written by Dr.-Ing. David Blanco-Rodriguez and published by Springer. This book was released on 2014-06-03 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a complete new methodology for the on-board measurements and modeling of gas concentrations in turbocharged diesel engines. It provides the readers with a comprehensive review of the state-of-art in NOx and lambda estimation and describes new important achievements accomplished by the author. These include: the online characterization of lambda and NOx sensors; the development of control-oriented models of lambda and NOx emissions; the design of computationally efficient updating algorithms; and, finally, the application and evaluation of the methods on-board. Because of its technically oriented approach and innovative findings on both control-oriented algorithms and virtual sensing and observation, this book offers a practice-oriented guide for students, researchers and professionals working in the field of control and information engineering.

Book Introduction to Modeling and Control of Internal Combustion Engine Systems

Download or read book Introduction to Modeling and Control of Internal Combustion Engine Systems written by Lino Guzzella and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.

Book Generalized Engine Systems Modeling  Methodology and Validation

Download or read book Generalized Engine Systems Modeling Methodology and Validation written by Moataz Ali and published by . This book was released on 2003 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effect of Sensor Uncertainty on the Control of EGR for Diesel Engines Based on Dynamic Matlab Simulink Engine Models

Download or read book Effect of Sensor Uncertainty on the Control of EGR for Diesel Engines Based on Dynamic Matlab Simulink Engine Models written by Matthew O. Greer and published by . This book was released on 2007 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optimization and Control of a Dual loop EGR System in a Modern Diesel Engine

Download or read book Optimization and Control of a Dual loop EGR System in a Modern Diesel Engine written by Yunfan Zhang and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the author's research aspects, the intelligent optimization algorithm and advanced control methods of the diesel engine's air path have been proposed in this work. In addition, the simulation platform and the HIL test platform are established for research activities on engine optimization and control. In this thesis, it presents an intelligent transient calibration method using the chaos-enhanced accelerated particle swarm optimization (CAPSO) algorithm. It is a model-based optimization approach. The test results show that the proposed method could locate the global optimal results of the controller parameters within good speed under various working conditions. The engine dynamic response is improved and a measurable drop of engine fuel consumption is acquired. The model predictive control (MPC) is selected for the controllers of DLEGR and VGT in the air-path of a diesel engine. Two MPC-based controllers are developed in this work, they are categorized into linear MPC and nonlinear MPC. Compared with conventional PIO controller, the MPC-based controllers show better reference trajectory tracking performance. Besides, an improvement of the engine fuel economy is obtained. The HIL test indicates the two controllers could be implemented on the real engine.

Book Trajectory Planning of an Autonomous Vehicle in Multi Vehicle Traffic Scenarios

Download or read book Trajectory Planning of an Autonomous Vehicle in Multi Vehicle Traffic Scenarios written by Mahdi Morsali and published by Linköping University Electronic Press. This book was released on 2021-03-25 with total page 25 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tremendous industrial and academic progress and investments have been made in au-tonomous driving, but still many aspects are unknown and require further investigation,development and testing. A key part of an autonomous driving system is an efficient plan-ning algorithm with potential to reduce accidents, or even unpleasant and stressful drivingexperience. A higher degree of automated planning also makes it possible to have a betterenergy management strategy with improved performance through analysis of surroundingenvironment of autonomous vehicles and taking action in a timely manner. This thesis deals with planning of autonomous vehicles in different urban scenarios, road,and vehicle conditions. The main concerns in designing the planning algorithms, are realtime capability, safety and comfort. The planning algorithms developed in this thesis aretested in simulation traffic situations with multiple moving vehicles as obstacles. The re-search conducted in this thesis falls mainly into two parts, the first part investigates decou-pled trajectory planning algorithms with a focus on speed planning, and the second sectionexplores different coupled planning algorithms in spatiotemporal environments where pathand speed are calculated simultaneously. Additionally, a behavioral analysis is carried outto evaluate different tactical maneuvers the autonomous vehicle can have considering theinitial states of the ego and surrounding vehicles. Particularly relevant for heavy duty vehicles, the issues addressed in designing a safe speedplanner in the first part are road conditions such as banking, friction, road curvature andvehicle characteristics. The vehicle constraints on acceleration, jerk, steering, steer ratelimitations and other safety limitations such as rollover are further considerations in speedplanning algorithms. For real time purposes, a minimum working roll model is identified us-ing roll angle and lateral acceleration data collected in a heavy duty truck. In the decoupledplanners, collision avoiding is treated using a search and optimization based planner. In an autonomous vehicle, the structure of the road network is known to the vehicle throughmapping applications. Therefore, this key property can be used in planning algorithms toincrease efficiency. The second part of the thesis, is focused on handling moving obstaclesin a spatiotemporal environment and collision-free planning in complex urban structures.Spatiotemporal planning holds the benefits of exhaustive search and has advantages com-pared to decoupled planning, but the search space in spatiotemporal planning is complex.Support vector machine is used to simplify the search problem to make it more efficient.A SVM classifies the surrounding obstacles into two categories and efficiently calculate anobstacle free region for the ego vehicle. The formulation achieved by solving SVM, con-tains information about the initial point, destination, stationary and moving obstacles.These features, combined with smoothness property of the Gaussian kernel used in SVMformulation is proven to be able to solve complex planning missions in a safe way. Here, three algorithms are developed by taking advantages of SVM formulation, a greedysearch algorithm, an A* lattice based planner and a geometrical based planner. One general property used in all three algorithms is reduced search space through using SVM. In A*lattice based planner, significant improvement in calculation time, is achieved by using theinformation from SVM formulation to calculate a heuristic for planning. Using this heuristic,the planning algorithm treats a simple driving scenario and a complex urban structureequal, as the structure of the road network is included in SVM solution. Inspired byobserving significant improvements in calculation time using SVM heuristic and combiningthe collision information from SVM surfaces and smoothness property, a geometrical planneris proposed that leads to further improvements in calculation time. Realistic driving scenarios such as roundabouts, intersections and takeover maneuvers areused, to test the performance of the proposed algorithms in simulation. Different roadconditions with large banking, low friction and high curvature, and vehicles prone to safetyissues, specially rollover, are evaluated to calculate the speed profile limits. The trajectoriesachieved by the proposed algorithms are compared to profiles calculated by optimal controlsolutions.

Book Modeling and Control of Engines and Drivelines

Download or read book Modeling and Control of Engines and Drivelines written by Lars Eriksson and published by John Wiley & Sons. This book was released on 2014-04-07 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control systems have come to play an important role in the performance of modern vehicles with regards to meeting goals on low emissions and low fuel consumption. To achieve these goals, modeling, simulation, and analysis have become standard tools for the development of control systems in the automotive industry. Modeling and Control of Engines and Drivelines provides an up-to-date treatment of the topic from a clear perspective of systems engineering and control systems, which are at the core of vehicle design. This book has three main goals. The first is to provide a thorough understanding of component models as building blocks. It has therefore been important to provide measurements from real processes, to explain the underlying physics, to describe the modeling considerations, and to validate the resulting models experimentally. Second, the authors show how the models are used in the current design of control and diagnosis systems. These system designs are never used in isolation, so the third goal is to provide a complete setting for system integration and evaluation, including complete vehicle models together with actual requirements and driving cycle analysis. Key features: Covers signals, systems, and control in modern vehicles Covers the basic dynamics of internal combustion engines and drivelines Provides a set of standard models and includes examples and case studies Covers turbo- and super-charging, and automotive dependability and diagnosis Accompanied by a web site hosting example models and problems and solutions Modeling and Control of Engines and Drivelines is a comprehensive reference for graduate students and the authors’ close collaboration with the automotive industry ensures that the knowledge and skills that practicing engineers need when analysing and developing new powertrain systems are also covered.

Book Diesel Engine Modeling

    Book Details:
  • Author : Society of Automotive Engineers
  • Publisher : SAE International
  • Release : 1999
  • ISBN : 9780768003826
  • Pages : 0 pages

Download or read book Diesel Engine Modeling written by Society of Automotive Engineers and published by SAE International. This book was released on 1999 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book CFD Modelling and Investigation of Two stroke Dual fuel Marine Engines with High Pressure Gas Admission

Download or read book CFD Modelling and Investigation of Two stroke Dual fuel Marine Engines with High Pressure Gas Admission written by Renyou Yang and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to their durability, cost-effectiveness and high efficiency, the large two-stroke marine engines are widely used by the merchant ships. However, as the conventional two-stroke diesel engines suffer from the high pollutants emissions, the dual fuel versions burning natural gas and pilot fuel to initiate combustion is an alternative, which can considerably reduce the engine environmental footprint. The application of the high pressure and direct injection of the natural gas can remarkably benefit the emissions. In order to understand in-depth the full-cycle operating processes in a two-stroke dual fuel marine engine with high-pressure gas direct injection, the related CFD models were customized and developed by the use of ANSYS Fluent, and validated by employing available experimental data. Subsequently, the parametric investigation of the dual fuel injection was conducted and the recommended sets of design parameters are identified. Furthermore, the internal processes in the whole cycle of the engine dual fuel and the diesel operating mode were analysed and compared.The spray process of the liquid/pilot fuel was modelled and validated by the available experimental data, taking into account the variable Thermophysical liquid fuel properties with the ambient conditions. Aiming to develop the models for the high-pressure gas injection, the conserving-equation sources approach was developed, considering the effects of the barrel-shaped shocks patterns near the nozzle exit. The derived CFD models were validated by the published measured penetrations of nitrogen injection under two pressure ratios values.As the diffusion flame dominates in the high-pressure direct injection (HPDI) gas combustion, the non-premixed dual fuel combustion model was developed, in which the pilot fuel combustion was treated as the ignition kernel. Based on the measurements in the rapid compression and expansion machine (RCEM), the derived heat release rate (HRR) and the NO emission was used to validate the CFD results. By comparing the results of the two investigated non-premixed combustion models, the steady flamelet diffusion model was recommended, where the reaction rates of Hanson and Salimian (1984) for the extended Zeldvich mechanism were applied.In order to determine the injection and geometric parameters of dual fuel operation in the marine engine S60ME, the parametric research of HPDI, combustion processes was conducted with the aim to maintain the power level and reduce the NO and CO2 emissions. The investigated parameters included the dual fuel injection timing, the gas injection duration, the lateral angle of gas nozzle, the holes number of gas injector, and the different inclination angle for each gas hole.Based on the results of the conducted parametric study, the dual fuel design parameters for the marine engine S60ME were recommended. By using the developed dual fuel combustion models, the whole-cycle processes in the large two-stroke marine dual fuel engine were investigated, by comparing the diesel model operating mode. The results indicated that the NO and CO2 emissions for the dual fuel mode were lower than that of the diesel mode by 31% and 21% respectively. The diffusion flame for the diesel mode was located downstream the liquid vapour plumes, whilst the dual fuel mode exhibited the high-temperature flame in the vicinity of the stoichiometric surface of the gas plumes. Moreover, the diesel mode achieved the higher flame temperature than the dual fuel mode. Due to the lower carbon dioxide (CO2) for the duel fuel combustion, the scavenging efficiency for the dual fuel mode was 4.2% higher than that of the diesel mode.