Download or read book Interpolatory Methods for Model Reduction written by A. C. Antoulas and published by SIAM. This book was released on 2020-01-13 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Interpolatory methods are among the most widely used model reduction techniques, and Interpolatory Methods for Model Reduction is the first comprehensive analysis of this approach available in a single, extensive resource. It introduces state-of-the-art methods reflecting significant developments over the past two decades, covering both classical projection frameworks for model reduction and data-driven, nonintrusive frameworks. This textbook is appropriate for a wide audience of engineers and other scientists working in the general areas of large-scale dynamical systems and data-driven modeling of dynamics.
Download or read book Realization and Model Reduction of Dynamical Systems written by Christopher Beattie and published by Springer Nature. This book was released on 2022-06-09 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book celebrates Professor Thanos Antoulas's 70th birthday, marking his fundamental contributions to systems and control theory, especially model reduction and, more recently, data-driven modeling and system identification. Model reduction is a prominent research topic with wide ranging scientific and engineering applications.
Download or read book Certified Reduced Basis Methods for Parametrized Partial Differential Equations written by Jan S Hesthaven and published by Springer. This book was released on 2015-08-20 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.
Download or read book Model Reduction and Approximation written by Peter Benner and published by SIAM. This book was released on 2017-07-06 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.
Download or read book Real time PDE constrained Optimization written by Lorenz T. Biegler and published by SIAM. This book was released on 2007-01-01 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.
Download or read book Model Reduction of Parametrized Systems written by Peter Benner and published by Springer. This book was released on 2017-09-05 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).
Download or read book Model Reduction of Nonlinear Mechanical Systems Via Optimal Projection and Tensor Approximation written by Kevin Thomas Carlberg and published by Stanford University. This book was released on 2011 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the advent and maturation of high-performance computing, high-fidelity physics-based numerical simulations remain computationally intensive in many fields. As a result, such simulations are often impractical for time-critical applications such as fast-turnaround design, control, and uncertainty quantification. The objective of this thesis is to enable rapid, accurate analysis of high-fidelity nonlinear models to enable their use in time-critical settings. Model reduction presents a promising approach for realizing this goal. This class of methods generates low-dimensional models that preserves key features of the high-fidelity model. Such methods have been shown to generate fast, accurate solutions when applied to specialized problems such as linear time-invariant systems. However, model reduction techniques for highly nonlinear systems has been limited primarily to approaches based on the heuristic proper orthogonal decomposition (POD)--Galerkin approach. These methods often generate inaccurate responses because 1) POD--Galerkin does not generally minimize any measure of the system error, and 2) the POD basis is not constructed to minimize errors in the system's outputs of interest. Furthermore, simulation times for these models usually remain large, as reducing the dimension of a nonlinear system does not necessarily reduce its computational complexity. This thesis presents two model reduction techniques that addresses these shortcomings of the POD--Galerkin method. The first method is a `compact POD' approach for computing the small-dimensional trial basis; this approach is applicable to parameterized static systems. The compact POD basis is constructed using a goal-oriented framework that allows sensitivity derivatives to be employed as snapshots. The second method is a Gauss--Newton with approximated tensors (GNAT) method applicable to nonlinear systems. Similar to other POD-based approaches, the GNAT method first executes high-fidelity simulations during a costly `offline' stage; it computes a POD subspace that optimally represents the state as observed during these simulations. To compute fast, accurate `online' solutions, the method introduces two approximations that satisfy optimality and consistency conditions. First, the method decreases the system dimension by searching for the solutions in the low-dimensional POD subspace. As opposed to performing a Galerkin projection, the method handles the resulting overdetermined system of equations arising at each time step by formulating a least-squares problem; this ensures that a measure of the system error (i.e. the residual) is minimized. Second, the method decreases the model's computational complexity by approximating the residual and Jacobian using the `gappy POD' technique; this requires computing only a few rows of the approximated quantities. For computational mechanics problems, the GNAT method leads to the concept of a sample mesh: the subset of the mesh needed to compute the selected rows of the residual and Jacobian. Because the reduced-order model uses only the sample mesh for computations, the online stage requires minimal computational resources.
Download or read book Princeton Companion to Applied Mathematics written by Nicholas J. Higham and published by Princeton University Press. This book was released on 2015-09-09 with total page 1014 pages. Available in PDF, EPUB and Kindle. Book excerpt: The must-have compendium on applied mathematics This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index
Download or read book Proceedings of the Third International Conference on Soft Computing for Problem Solving written by Millie Pant and published by Springer. This book was released on 2014-07-08 with total page 966 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of SocProS 2013 serve as an academic bonanza for scientists and researchers working in the field of Soft Computing. This book contains theoretical as well as practical aspects of Soft Computing, an umbrella term for techniques like fuzzy logic, neural networks and evolutionary algorithms, swarm intelligence algorithms etc. This book will be beneficial for the young as well as experienced researchers dealing with complex and intricate real world problems for which finding a solution by traditional methods is very difficult. The different areas covered in the proceedings are: Image Processing, Cryptanalysis, Supply Chain Management, Newly Proposed Nature Inspired Algorithms, Optimization, Problems related to Medical and Health Care, Networking etc.
Download or read book Nonlinear Dynamics and Chaos written by Steven H. Strogatz and published by CRC Press. This book was released on 2018-05-04 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Download or read book Applications written by Peter Benner and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-12-07 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This three-volume handbook covers methods as well as applications. This third volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
Download or read book Exploiting the Use of Strong Nonlinearity in Dynamics and Acoustics written by Oleg V. Gendelman and published by Springer Nature. This book was released on with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Large Scale Inverse Problems and Quantification of Uncertainty written by Lorenz Biegler and published by John Wiley & Sons. This book was released on 2011-06-24 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.
Download or read book Port Hamiltonian Systems Theory written by Schaft Van Der and published by . This book was released on 2014-06-13 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Port-Hamiltonian Systems Theory: An Introductory Overview provides a concise and easily accessible description of the foundations underpinning the subject and emphasizes novel developments in the field, which will be of interest to a broad range of researchers.
Download or read book Principal Component Analysis written by I.T. Jolliffe and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.
Download or read book Aeroacustic and Vibroacoustic Advancement in Aerospace and Automotive Systems written by Roberto Citarella and published by MDPI. This book was released on 2018-06-26 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Advances in Vibroacoustics and Aeroacustics of Aerospace and Automotive Systems" that was published in Applied Sciences
Download or read book Feedback Systems written by Karl Johan Åström and published by Princeton University Press. This book was released on 2021-02-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory