EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Model Order Reduction of Nonlinear Dynamical Systems

Download or read book Model Order Reduction of Nonlinear Dynamical Systems written by Chenjie Gu and published by . This book was released on 2011 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Higher-level representations (macromodels, reduced-order models) abstract away unnecessary implementation details and model only important system properties such as functionality. This methodology -- well-developed for linear systems and digital (Boolean) circuits -- is not mature for general nonlinear systems (such as analog/mixed-signal circuits). Questions arise regarding abstracting/macromodeling nonlinear dynamical systems: What are ``important'' system properties to preserve in the macromodel? What is the appropriate representation of the macromodel? What is the general algorithmic framework to develop a macromodel? How to automatically derive a macromodel from a white-box/black-box model? This dissertation presents techniques for solving the problem of macromodeling nonlinear dynamical systems by trying to answer these questions. We formulate the nonlinear model order reduction problem as an optimization problem and present a general nonlinear projection framework that encompasses previous linear projection-based techniques as well as the techniques developed in this dissertation. We illustrate that nonlinear projection is natural and appropriate for reducing nonlinear systems, and can achieve more compact and accurate reduced models than linear projection. The first method, ManiMOR, is a direct implementation of the nonlinear projection framework. It generates a nonlinear reduced model by projection on a general-purpose nonlinear manifold. The proposed manifold can be proven to capture important system dynamics such as DC and AC responses. We develop numerical methods that alleviates the computational cost of the reduced model which is otherwise too expensive to make the reduced order model of any value compared to the full model. The second method, QLMOR, transforms the full model to a canonical QLDAE representation and performs Volterra analysis to derive a reduced model. We develop an algorithm that can mechanically transform a set of nonlinear differential equations to another set of equivalent nonlinear differential equations that involve only quadratic terms of state variables, and therefore it avoids any problem brought by previous Taylor-expansion-based methods. With the QLDAE representation, we develop the corresponding model order reduction algorithm that extends and generalizes previously-developed Volterra-based technique. The third method, NTIM, derives a macromodel that specifically captures timing/phase responses of a nonlinear system. We rigorously define the phase response for a non-autonomous system, and derive the dynamics of the phase response. The macromodel emerges as a scalar, nonlinear time-varying differential equation that can be computed by performing Floquet analysis of the full model. With the theory developed, we also present efficient numerical methods to compute the macromodel. The fourth method, DAE2FSM, considers a slightly different problem -- finite state machine abstraction of continuous dynamical systems. We present an algorithm that learns a Mealy machine from a set of differential equations from its input-output trajectories. The algorithm explores the state space in a smart way so that it can identify the underlying finite state machine using very few information about input-output trajectories.

Book Model Reduction of Complex Dynamical Systems

Download or read book Model Reduction of Complex Dynamical Systems written by Peter Benner and published by Springer Nature. This book was released on 2021-08-26 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems. Chapters are written by leading researchers and users of model order reduction techniques and are based on presentations given at the 2019 edition of the workshop series Model Reduction of Complex Dynamical Systems – MODRED, held at the University of Graz in Austria. The topics considered can be divided into five categories: system-theoretic methods, such as balanced truncation, Hankel norm approximation, and reduced-basis methods; data-driven methods, including Loewner matrix and pencil-based approaches, dynamic mode decomposition, and kernel-based methods; surrogate modeling for design and optimization, with special emphasis on control and data assimilation; model reduction methods in applications, such as control and network systems, computational electromagnetics, structural mechanics, and fluid dynamics; and model order reduction software packages and benchmarks. This volume will be an ideal resource for graduate students and researchers in all areas of model reduction, as well as those working in applied mathematics and theoretical informatics.

Book Model Order Reduction  Theory  Research Aspects and Applications

Download or read book Model Order Reduction Theory Research Aspects and Applications written by Wilhelmus H. Schilders and published by Springer Science & Business Media. This book was released on 2008-08-27 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.

Book Parameterized Model Order Reduction for Nonlinear Dynamical Systems

Download or read book Parameterized Model Order Reduction for Nonlinear Dynamical Systems written by Bradley Neil Bond and published by . This book was released on 2006 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt: (Cont.) Using the proposed algorithms, the local and global parameter-space accuracy of the reduced order models can be adjusted as desired. Models call be created which are extremely accurate over a narrow range of parameter values. as well as models which are less accurate locally but still provide adequate accuracy over a much wider range of parameter values.

Book A Trajectory Piecewise linear Approach to Model Order Reduction of Nonlinear Dynamical Systems

Download or read book A Trajectory Piecewise linear Approach to Model Order Reduction of Nonlinear Dynamical Systems written by Michał Jerzy Rewieński and published by . This book was released on 2003 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: (Cont.) Finally, we present projection schemes which result in improved accuracy of the reduced order TPWL models, as well as discuss approaches leading to guaranteed stable and passive TPWL reduced-order models.

Book Model Reduction for Nonlinear Dynamical Systems with Parametric Uncertainties

Download or read book Model Reduction for Nonlinear Dynamical Systems with Parametric Uncertainties written by Yuxiang Beckett Zhou and published by . This book was released on 2012 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear dynamical systems are known to be sensitive to input parameters. In this thesis, we apply model order reduction to an important class of such systems -- one which exhibits limit cycle oscillations (LCOs) and Hopf-bifurcations. Highfidelity simulations for systems with LCOs are computationally intensive, precluding probabilistic analyses of these systems with uncertainties in the input parameters. In this thesis, we employ a projection-based model reduction approach, in which the proper orthogonal decomposition (POD) is used to derive the reduced basis while the discrete empirical interpolation method (DEIM) is employed to approximate the nonlinear term such that the repeated online evaluations of the reduced-order model (ROM) is independent of the full-order model (FOM) dimension. In problems where vastly different magnitudes exist in the unknowns variables, the original POD-DEIM approach results in large error in the smaller variables. In unsteady simulations, such error quickly accumulates over time, significantly reducing the accuracy of the ROM. The interpolatory nature of the DEIM also limits its accuracy in approximating highly oscillatory nonlinear terms. In this work, modifications to the existing methodology are proposed whereby scalar-valued POD modes are used in each variable of the state and the nonlinear term, and the pure interpolation of the DEIM approximation is also replaced by a regression via over-sampling of the nonlinear term. The modified methodology is applied to two nonlinear dynamical problems: a reacting flow model of a tubular reactor and an aeroelastic model of a cantilevered plate, both of which exhibit LCO and Hopf-bifurcation. Results indicate that in situations where the efficiency of the original POD-DEIM ROM is compromised by disparate magnitudes in unknown variables or by the need to include large sets of interpolation points, the modified POD-DEIM ROM accurately predicts the system responses in a small fraction of the FOM computational time.

Book Interpolatory Methods for Model Reduction

Download or read book Interpolatory Methods for Model Reduction written by A. C. Antoulas and published by SIAM. This book was released on 2020-01-13 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Interpolatory methods are among the most widely used model reduction techniques, and Interpolatory Methods for Model Reduction is the first comprehensive analysis of this approach available in a single, extensive resource. It introduces state-of-the-art methods reflecting significant developments over the past two decades, covering both classical projection frameworks for model reduction and data-driven, nonintrusive frameworks. This textbook is appropriate for a wide audience of engineers and other scientists working in the general areas of large-scale dynamical systems and data-driven modeling of dynamics.

Book Model Order Reduction for Linear and Nonlinear Systems

Download or read book Model Order Reduction for Linear and Nonlinear Systems written by Ulrike Baur and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: In the past decades, Model Order Reduction (MOR) has demonstrated its robustness and wide applicability for simulating large-scale mathematical models in engineering and the sciences. Recently, MOR has been intensively further developed for increasingly complex dynamical systems. Wide applications of MOR have been found not only in simulation, but also in optimization and control. In this survey paper, we review some popular MOR methods for linear and nonlinear large-scale dynamical systems, mainly used in electrical and control engineering, in computational electromagnetics, as well as in micro- and nano-electro-mechanical systems (NEMS/MEMS) design. Besides reviewing existing methods and the computational techniques needed to implement them, open issues are discussed, and some new results are proposed.

Book Modeling  Simulation and Control of Nonlinear Engineering Dynamical Systems

Download or read book Modeling Simulation and Control of Nonlinear Engineering Dynamical Systems written by Jan Awrejcewicz and published by Springer Science & Business Media. This book was released on 2008-12-26 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the invited papers presented at the 9th International Conference "Dynamical Systems — Theory and Applications" held in Lódz, Poland, December 17-20, 2007, dealing with nonlinear dynamical systems. The conference brought together a large group of outstanding scientists and engineers, who deal with various problems of dynamics encountered both in engineering and in daily life. Topics covered include, among others, bifurcations and chaos in mechanical systems; control in dynamical systems; asymptotic methods in nonlinear dynamics; stability of dynamical systems; lumped and continuous systems vibrations; original numerical methods of vibration analysis; and man-machine interactions. Thus, the reader is given an overview of the most recent developments of dynamical systems and can follow the newest trends in this field of science. This book will be of interest to to pure and applied scientists working in the field of nonlinear dynamics.

Book Model Reduction of Nonlinear Dynamical Systems by System theoretic Methods

Download or read book Model Reduction of Nonlinear Dynamical Systems by System theoretic Methods written by Maria Cruz Varona and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Data Driven Science and Engineering

Download or read book Data Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Book The Effect of Problem Perturbations on Nonlinear Dynamical Systems and Their Reduced Order Models

Download or read book The Effect of Problem Perturbations on Nonlinear Dynamical Systems and Their Reduced Order Models written by and published by . This book was released on 2005 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reduced order models are used extensively in many areas of science and engineering for simulation, design, and control. Reduction techniques for nonlinear dynamical systems produce models that depend strongly on the nominal set of parameters for which the reduction is carried out. In this paper we address the following two questions: 'What is the effect of perturbations in the problem parameters on the output functional of a nonlinear dynamical system?' and 'To what extent does the reduced order model capture this effect?'

Book Reduced Order Methods for Modeling and Computational Reduction

Download or read book Reduced Order Methods for Modeling and Computational Reduction written by Alfio Quarteroni and published by Springer. This book was released on 2014-06-05 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics. Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.

Book Realization and Model Reduction of Dynamical Systems

Download or read book Realization and Model Reduction of Dynamical Systems written by Christopher Beattie and published by Springer Nature. This book was released on 2022-06-09 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book celebrates Professor Thanos Antoulas's 70th birthday, marking his fundamental contributions to systems and control theory, especially model reduction and, more recently, data-driven modeling and system identification. Model reduction is a prominent research topic with wide ranging scientific and engineering applications.

Book Linear and Nonlinear Model Order Reduction for Numerical Simulation of Electric Circuits

Download or read book Linear and Nonlinear Model Order Reduction for Numerical Simulation of Electric Circuits written by Kasra Mohaghegh and published by Logos Verlag Berlin GmbH. This book was released on 2010 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasing complexity combined with decreasing geometrical sizes in electric circuit design lead to high dimensional dynamical models to be considered by EDA tools. Model order reduction (MOR) has become a popular strategy to decrease the problem's size while preserving its crucial properties. MOR shall achieve accurate statements on a circuit's behavior within an affordable amount of computational time. Just recently, MOR techniques are designed to consider the differential algebraic nature of the underlying models. We present an approach based on an e-embedding, i.e., a strategy applied in the construction of numerical integration schemes for differential algebraic equations (DAEs). The system of DAEs is transformed into an artificial system of ordinary differential equations (ODEs), since MOR schemes for ODEs can be applied now. We construct, analyze and test different strategies with respect to the usage of the parameter e that transforms the DAEs into ODEs. Moreover, accurate mathematical models for MOS-devices introduce highly nonlinear equations. As the packing density of devices is growing in circuit design, huge nonlinear systems appear in practice. It follows an increasing demand for reduced order modeling of nonlinear problems. In the thesis, we also review the status of existing techniques for nonlinear MOR by investigating the performance of the schemes applied in circuit simulation.

Book Nonlinear Dynamics  Volume 1

Download or read book Nonlinear Dynamics Volume 1 written by Gaetan Kerschen and published by Springer. This book was released on 2017-05-03 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Dynamics, Volume 1: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics, 2017, the first volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Nonlinear Dynamics, including papers on: Nonlinear System Identification Nonlinear Modeling & Simulation Nonlinear Reduced-order Modeling Nonlinearity in Practice Nonlinearity in Aerospace Systems Nonlinearity in Multi-Physics Systems Nonlinear Modes and Modal Interactions Experimental Nonlinear Dynamics