Download or read book Lithium ion Batteries written by Perla B. Balbuena and published by World Scientific. This book was released on 2004 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book focuses on the mechanisms of formation of a solid-electrolyte interphase (SEI) on the electrode surfaces of lithium-ion batteries. The SEI film is due to electromechanical reduction of species present in the electrolyte. It is widely recognized that the presence of the film plays an essential role in the battery performance, and its very nature can determine an extended (or shorter) life for the battery. In spite of the numerous related research efforts, details on the stability of the SEI composition and its influence on the battery capacity are still controversial. This book carefully analyzes and discusses the most recent findings and advances on this topic.
Download or read book Lithium ion Batteries Enabled by Silicon Anodes written by Chunmei Ban and published by IET. This book was released on 2021-08-26 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model predictive control (MPC) is a method for controlling a process while satisfying a set of constraints. The use of MPC for controlling power systems has been gaining traction in recent years. This work presents the use of MPC for distributed renewable power generation in microgrids.
Download or read book Electrodes for Li ion Batteries written by Laure Monconduit and published by John Wiley & Sons. This book was released on 2015-06-29 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electrochemical energy storage is a means to conserve electrical energy in chemical form. This form of storage benefits from the fact that these two energies share the same vector, the electron. This advantage allows us to limit the losses related to the conversion of energy from one form to another. The RS2E focuses its research on rechargeable electrochemical devices (or electrochemical storage) batteries and supercapacitors. The materials used in the electrodes are key components of lithium-ion batteries. Their nature depend battery performance in terms of mass and volume capacity, energy density, power, durability, safety, etc. This book deals with current and future positive and negative electrode materials covering aspects related to research new and better materials for future applications (related to renewable energy storage and transportation in particular), bringing light on the mechanisms of operation, aging and failure.
Download or read book Silicon Anode Systems for Lithium Ion Batteries written by Prashant Kumta and published by Elsevier. This book was released on 2021-09-10 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Anode Systems for Lithium-Ion Batteries is an introduction to silicon anodes as an alternative to traditional graphite-based anodes. The book provides a comprehensive overview including abundance, system voltage, and capacity. It provides key insights into the basic challenges faced by the materials system such as new configurations and concepts for overcoming the expansion and contraction related problems. This book has been written for the practitioner, researcher or developer of commercial technologies. - Provides a thorough explanation of the advantages, challenge, materials science, and commercial prospects of silicon and related anode materials for lithium-ion batteries - Provides insights into practical issues including processing and performance of advanced Si-based materials in battery-relevant materials systems - Discusses suppressants in electrolytes to minimize adverse effects of solid electrolyte interphase (SEI) formation and safety limitations associated with this technology
Download or read book Modern Battery Engineering A Comprehensive Introduction written by Kai Peter Birke and published by World Scientific. This book was released on 2019-04-05 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'This is a book primarily for engineers and materials scientists either researching or developing Li-ion energy storage batteries who want to understand some of the critical aspects of Li-ion battery technology and gain knowledge about the latest engineering designs and latest materials being used in Li-ion batteries. Good technical depth, many tables of data, and many illustrations combined with references at the end of each chapter for further in-depth study make this book worth reading to gain a quick understanding of the current state-of-the art in Li-ion battery technology and the fundamental issues and challenges facing Li-ion battery designers.'IEEE Electrical Insulation MagazineThis richly illustrated book written by Professor Kai Peter Birke and several co-authors addresses both scientific and engineering aspects of modern batteries in a unique way. Emphasizing the engineering part of batteries, the book acts as a compass towards next generation batteries for automotive and stationary applications. The book provides distinguished answers to still open questions on how future batteries look like.Modern Battery Engineering explains why and how batteries have to be designed for successful commercialization in e-mobility and stationary applications. The book will help readers understand the principle issues of battery designs, paving the way for engineers to avoid wrong paths and settle on appropriate cell technologies for next generation batteries. This book is ideal for training courses for readers interested in the field of modern batteries.
Download or read book Electron Backscatter Diffraction in Materials Science written by Adam J. Schwartz and published by Springer Science & Business Media. This book was released on 2010-03-11 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electron backscatter diffraction is a very powerful and relatively new materials characterization technique aimed at the determination of crystallographic texture, grain boundary character distributions, lattice strain, phase identification, and much more. The purpose of this book is to provide the fundamental basis for electron backscatter diffraction in materials science, the current state of both hardware and software, and illustrative examples of the applications of electron backscatter diffraction to a wide-range of materials including undeformed and deformed metals and alloys, ceramics, and superconductors. The text has been substantially revised from the first edition, and the authors have kept the format as close as possible to the first edition text. The new developments covered in this book include a more comphrensive coverage of the fundamentals not covered in the first edition or other books in the field, the advances in hardware and software since the first edition was published, and current examples of application of electron backscatter diffraction to solve challenging problems in materials science and condensed-matter physics.
Download or read book Lithium ion Batteries written by and published by . This book was released on 2019 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is the first machine-generated scientific book in chemistry published by Springer Nature. Serving as an innovative prototype defining the current status of the technology, it also provides an overview about the latest trends of lithium-ion batteries research. This book explores future ways of informing researchers and professionals. State-of-the-art computer algorithms were applied to: select relevant sources from Springer Nature publications, arrange these in a topical order, and provide succinct summaries of these articles. The result is a cross-corpora auto-summarization of current texts, organized by means of a similarity-based clustering routine in coherent chapters and sections. This book summarizes more than 150 research articles published from 2016 to 2018 and provides an informative and concise overview of recent research into anode and cathode materials as well as further aspects such as separators, polymer electrolytes, thermal behavior and modelling. With this prototype, Springer Nature has begun an innovative journey to explore the field of machine-generated content and to find answers to the manifold questions on this fascinating topic. Therefore it was intentionally decided not to manually polish or copy-edit any of the texts so as to highlight the current status and remaining boundaries of machine-generated content. Our goal is to initiate a broad discussion, together with the research community and domain experts, about the future opportunities, challenges and limitations of this technology."--Publisher's website.
Download or read book New Trends in Intercalation Compounds for Energy Storage and Conversion written by Karim Zaghib and published by The Electrochemical Society. This book was released on 2003 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers presented at the symposium held in Paris, France on April 30-May 2, 2003.
Download or read book Liquid Cell Electron Microscopy written by Frances M. Ross and published by Cambridge University Press. This book was released on 2017 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2.6.2 Electrodes for Electrochemistry
Download or read book Handbook Of Solid State Batteries Second Edition written by Nancy J Dudney and published by World Scientific. This book was released on 2015-07-09 with total page 835 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid-state batteries hold the promise of providing energy storage with high volumetric and gravimetric energy densities at high power densities, yet with far less safety issues relative to those associated with conventional liquid or gel-based lithium-ion batteries. Solid-state batteries are envisioned to be useful for a broad spectrum of energy storage applications, including powering automobiles and portable electronic devices, as well as stationary storage and load-leveling of renewably generated energy. This comprehensive handbook covers a wide range of topics related to solid-state batteries, including advanced enabling characterization techniques, fundamentals of solid-state systems, novel solid electrolyte systems, interfaces, cell-level studies, and three-dimensional architectures. It is directed at physicists, chemists, materials scientists, electrochemists, electrical engineers, battery technologists, and evaluators of present and future generations of power sources. This handbook serves as a reference text providing state-of-the-art reviews on solid-state battery technologies, as well as providing insights into likely future developments in the field. It is extensively annotated with comprehensive references useful to the student and practitioners in the field.
Download or read book High Energy Density Lithium Batteries written by Katerina E. Aifantis and published by John Wiley & Sons. This book was released on 2010-03-30 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials Engineering for High Density Energy Storage provides first-hand knowledge about the design of safe and powerful batteries and the methods and approaches for enhancing the performance of next-generation batteries. The book explores how the innovative approaches currently employed, including thin films, nanoparticles and nanocomposites, are paving new ways to performance improvement. The topic's tremendous application potential will appeal to a broad audience, including materials scientists, physicists, electrochemists, libraries, and graduate students.
Download or read book Lithium ion Battery Materials and Engineering written by Malgorzata K. Gulbinska and published by Springer. This book was released on 2014-09-06 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gaining public attention due, in part, to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production. This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries. Authors with years of experience in the applied science and engineering of lithium-ion batteries gather to share their view on where lithium-ion technology stands now, what are the main challenges, and their possible solutions. The book contains real-life examples of how a subtle change in cell components can have a considerable effect on cell’s performance. Examples are supported with approachable basic science commentaries. Providing a unique combination of practical know-how with an in-depth perspective, this book will appeal to graduate students, young faculty members, or others interested in the current research and development trends in lithium-ion technology.
Download or read book Mathematical Modeling of Lithium Batteries written by Krishnan S. Hariharan and published by Springer. This book was released on 2017-12-28 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is unique to be the only one completely dedicated for battery modeling for all components of battery management system (BMS) applications. The contents of this book compliment the multitude of research publications in this domain by providing coherent fundamentals. An explosive market of Li ion batteries has led to aggressive demand for mathematical models for battery management systems (BMS). Researchers from multi-various backgrounds contribute from their respective background, leading to a lateral growth. Risk of this runaway situation is that researchers tend to use an existing method or algorithm without in depth knowledge of the cohesive fundamentals—often misinterpreting the outcome. It is worthy to note that the guiding principles are similar and the lack of clarity impedes a significant advancement. A repeat or even a synopsis of all the applications of battery modeling albeit redundant, would hence be a mammoth task, and cannot be done in a single offering. The authors believe that a pivotal contribution can be made by explaining the fundamentals in a coherent manner. Such an offering would enable researchers from multiple domains appreciate the bedrock principles and forward the frontier. Battery is an electrochemical system, and any level of understanding cannot ellipse this premise. The common thread that needs to run across—from detailed electrochemical models to algorithms used for real time estimation on a microchip—is that it be physics based. Build on this theme, this book has three parts. Each part starts with developing a framework—often invoking basic principles of thermodynamics or transport phenomena—and ends with certain verified real time applications. The first part deals with electrochemical modeling and the second with model order reduction. Objective of a BMS is estimation of state and health, and the third part is dedicated for that. Rules for state observers are derived from a generic Bayesian framework, and health estimation is pursued using machine learning (ML) tools. A distinct component of this book is thorough derivations of the learning rules for the novel ML algorithms. Given the large-scale application of ML in various domains, this segment can be relevant to researchers outside BMS domain as well. The authors hope this offering would satisfy a practicing engineer with a basic perspective, and a budding researcher with essential tools on a comprehensive understanding of BMS models.
Download or read book Nanomaterials For Energy Conversion And Storage written by Dunwei Wang and published by World Scientific. This book was released on 2017-11-10 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities.Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy.
Download or read book Lithium Batteries written by Bruno Scrosati and published by John Wiley & Sons. This book was released on 2013-06-18 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and identifying new electrode and electrolyte materials. The first chapter of Lithium Batteries sets the foundation for the rest of the book with a brief account of the history of lithium-ion battery development. Next, the book covers such topics as: Advanced organic and ionic liquid electrolytes for battery applications Advanced cathode materials for lithium-ion batteries Metal fluorosulphates capable of doubling the energy density of lithium-ion batteries Efforts to develop lithium-air batteries Alternative anode rechargeable batteries such as magnesium and sodium anode systems Each of the sixteen chapters has been contributed by one or more leading experts in electrochemistry and lithium battery technology. Their contributions are based on the latest published findings as well as their own firsthand laboratory experience. Figures throughout the book help readers understand the concepts underlying the latest efforts to advance the science of batteries and develop new materials. Readers will also find a bibliography at the end of each chapter to facilitate further research into individual topics. Lithium Batteries provides electrochemistry students and researchers with a snapshot of current efforts to improve battery performance as well as the tools needed to advance their own research efforts.
Download or read book Materials for Sustainable Energy written by Vincent Dusastre and published by World Scientific. This book was released on 2011 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: The search for cleaner, cheaper, smaller and more efficient energy technologies has to a large extent been motivated by the development of new materials. The aim of this collection of articles is therefore to focus on what materials-based solutions can offer and show how the rationale design and improvement of their physical and chemical properties can lead to energy-production alternatives that have the potential to compete with existing technologies. In terms of alternative means to generate electricity that utilize renewable energy sources, the most dramatic breakthroughs for both mobile (i.e., transportation) and stationary applications are taking place in the fields of solar and fuel cells. And from an energy-storage perspective, exciting developments can be seen emerging from the fields of rechargeable batteries and hydrogen storage.
Download or read book Materials for Lithium Ion Batteries written by Christian Julien and published by Springer Science & Business Media. This book was released on 2000-10-31 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: A lithium-ion battery comprises essentially three components: two intercalation compounds as positive and negative electrodes, separated by an ionic-electronic electrolyte. Each component is discussed in sufficient detail to give the practising engineer an understanding of the subject, providing guidance on the selection of suitable materials in actual applications. Each topic covered is written by an expert, reflecting many years of experience in research and applications. Each topic is provided with an extensive list of references, allowing easy access to further information. Readership: Research students and engineers seeking an expert review. Graduate courses in electrical drives can also be designed around the book by selecting sections for discussion. The coverage and treatment make the book indispensable for the lithium battery community.