EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design and analysis of a novel kinematically redundant parallel robot with all actuators located at the base

Download or read book Design and analysis of a novel kinematically redundant parallel robot with all actuators located at the base written by Zhou Zhou (Auteur de Design and analysis of a novel kinematically redundant parallel robot with all actuators located at the base) and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cette thèse propose et analyse un nouveau robot parallèle cinématiquement redondant (KRP) avec tous les actionneurs situés à la base. La structure de base du robot provient de travaux antérieurs, c'est-à-dire que trois jambes avec 3 degrés de liberté (ddls) chacune sont attachées à la plate-forme mobile par trois liaisons redondantes, ce qui donne un robot KRP avec (6+3) degrés de liberté. Cette thèse se concentre sur quatre thèmes. Tout d'abord, un nouveau robot parallèle à 3 ddls utilisé comme jambe du robot KRP est proposé, et tous les actionneurs sont situés à la base afin de réduire l'inertie des parties mobiles. De plus, les actionneurs sont placés près les uns des autres pour minimiser l'encombrement et produire un espace de travail relativement grand. Les problèmes cinématiques tels que la modélisation cinématique, le problème inverse/direct, l'analyse des singularités et l'espace de travail sont analysés en détail. En outre, pour simplifier l'analyse de l'espace de travail et agrandir l'espace de travail, une conception améliorée du robot à 3 ddls est proposée. L'établissement de modèles dynamiques pour les robots parallèles est un défi en raison des relations complexes entre les vitesses et les forces induites par leur structure en boucle fermée. Cette thèse propose plusieurs méthodes de modélisation simplifiées pour les robots parallèles. Le premier type est dérivé de l'approche lagrangienne et l'idée centrale est de réduire la complexité des expressions représentant l'énergie pour le robot. Par conséquent, ces méthodes ont une bonne généralité et sont disponibles pour divers robots parallèles. Cependant, pour certains robots parallèles (par exemple, le robot à 3 ddls proposé), même en utilisant la méthode simplifiée, les calculs d'énergie sont légèrement complexes. Compte tenu de cela, une autre méthode de modélisation simplifiée basée sur l'approche de Newton-Euler est proposée et analysée. Étant donné que le nouveau robot KRP a une structure similaire à celle des robots KRP précédents, la plupart des méthodes analysées dans les travaux précédents peuvent être directement utilisées. Par conséquent, cette thèse ne résout que brièvement le problème inverse/direct, explique la singularité du point de vue de la force, donne le modèle dynamique et montre la structure et le modèle CAO du prototype du nouveau robot KRP. Enfin, cette thèse propose une méthode générale de contrôle de préhension par laquelle le robot KRP peut faire fonctionner à distance une pince pour générer les forces de préhension requises tout en déplaçant la plate-forme, toutes les actions étant pilotées par les mêmes actionneurs. Le modèle de contrôle de préhension se compose d'un modèle de contrôle du mouvement des jambes et d'un modèle de contrôle de la force des jambes, où la force de préhension peut être contrôlée indépendamment. En conséquence, le modèle de contrôle en force utilise un contrôleur en boucle ouverte, simple à mettre en œuvre et efficace.

Book Commande d un robot collaboratif redondant en interaction avec des humains dans un contexte de manipulation et d assemblage

Download or read book Commande d un robot collaboratif redondant en interaction avec des humains dans un contexte de manipulation et d assemblage written by Pascal Labrecque and published by . This book was released on 2017 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cette thèse présente deux nouvelles architectures de commande pour les interactions physiques humain-robot (pHRIs). Ces architectures sont spéciquement développées dans une vision d'implantation en industrie pour les manipulations d'assemblage. En effet, deux types de robots collaboratifs adaptés à dfférentes contraintes de l'industrie et ayant des interfaces d'interactions physiques différentes sont étudiés en utilisant chacun leur propre architecture de commande. Le premier robot collaboratif développé est un manipulateur entièrement actionné permettant des pHRIs dans son espace libre, c.-à-d., des interactions unilatérales, et des pHRIs lorsque ses mouvements sont contraints par un environnement quelconque, c.-à-d., des interactions bilatérales. Les interactions de l'humain peuvent s'effectuer sur n'importe quelles parties du robot grâce aux capteurs de couples dans les articulations. Cependant, si une amplication des forces de l'humain sur l'environnement est désirée, alors il est nécessaire d'utiliser le capteur d'efforts supplémentaire attaché au robot. Ceci permet à la commande, en combinant les lectures du capteur d'efforts à l'effecteur, d'utiliser le ratio des forces appliquées indépendamment par l'opérateur et par l'environnement an de générer l'amplication désirée. Cette loi de commande est basée sur l'admittance variable qui a déjà démontré ses bénéces pour les interactions unilatérales. Ici, l'admittance variable est adaptée aux interactions bilatérales an d'obtenir un seul algorithme de commande pour tous les états. Une loi de transition continue peut alors être dénie an d'atteindre les performances optimales pour chaque mode d'interaction qui, en fait, nécessitent chacun des valeurs de paramètres spéciques. Le cheminement et les résultats pour arriver à cette première architecture de commande sont présentés en trois étapes. Premièrement, la loi de commande est implémentée sur un prototype à un degré de liberté (ddl) an de tester le potentiel d'amplication et de transition, ainsi que la stabilité de l'interaction. Deuxièmement, un algorithme d'optimisation du régulateur pour les interactions bilatérales avec un robot à plusieurs ddls est développé. Cet algorithme vérie la stabilité robuste du système en utilisant l'approche des valeurs singulières structurées (- analysis), pour ensuite faire une optimisation des régulateurs stables en fonction d'une variable liée à la conguration du manipulateur. Ceci permet d'obtenir une loi de commande variable qui rend le système stable de façon robuste en atteignant des performances optimales peu iii importe la conguration des articulations du robot. La loi de commande trouvée utilise un séquencement de gain pour les paramètres du régulateur par admittance durant les interactions bilatérales. La stabilité et la performance du système sont validées avec des tests d'impact sur différents environnements. Finalement, la loi de commande en admittance variable optimale est implémentée et validée sur un robot manipulateur à plusieurs ddls (Kuka LWR 4) à l'aide de suivis de trajectoire pour des interactions unilatérales et bilatérales. Le deuxième robot collaboratif développé est un manipulateur partiellement actif et partiellement passif. L'architecture mécanique du robot est appelée macro-mini. Tous les degrés de liberté actionnés faisant partie du macro manipulateur sont doublés par les articulations passives du mini manipulateur. Le robot est alors sous-actionné. L'opérateur humain interagit uniquement avec le mini manipulateur, et donc, avec les articulations passives ce qui élimine tous délais dans la dynamique d'interaction. Ce robot collaboratif permet de dénir une loi de commande qui génère une très faible impédance lors des interactions de l'opérateur, et ce, même pour des charges utiles élevées. Malgré que des amplications de force ne peuvent être produites, les interactions bilatérales ont une stabilité assurée peu importe la situation. Aussi, les modes coopératif et autonome du robot utilisent les mêmes valeurs de paramètres de commande ce qui permet une transition imperceptible d'un à l'autre. La nouvelle loi de commande est comparée sur plusieurs aspects avec la commande en admittance variable précé- demment développée. Les résultats démontrent que cette nouvelle loi de commande combinée à l'architecture active-passive du macro-mini manipulateur, appelé uMan, permet des interactions intuitives et sécuritaires bien supérieures à ce qu'un système entièrement actionné peut générer. De plus, pour l'assistance autonome, une détection de collision avancée et une plani cation de trajectoire adaptée à l'architecture du robot sont développées. Des validations expérimentales sont présentées an d'évaluer la facilité à produire des manipulations nes, de démontrer la sécurité du système et d'établir la viabilité du concept en industrie.