EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Microfluidics for Single Cell Analysis

Download or read book Microfluidics for Single Cell Analysis written by Jin-Ming Lin and published by Springer Nature. This book was released on 2019-08-28 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor’s laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods.

Book Micro and Nano Systems for Biophysical Studies of Cells and Small Organisms

Download or read book Micro and Nano Systems for Biophysical Studies of Cells and Small Organisms written by Xinyu Liu and published by Academic Press. This book was released on 2021-08-14 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro and Nano Systems for Biophysical Studies of Cells and Small Organisms provides a comprehensive introduction to the state-of-the-art micro and nano systems that have recently been developed and applied to biophysical studies of cells and small organisms. These micro and nano systems span from microelectromechanical systems (MEMS) and microfluidic devices to robotic micro-nanomanipulation systems. These biophysical studies range from cell mechanics to the neural science of worms and Drosophila. This book will help readers understand the fundamentals surrounding the development of these tools and teach them the most recent advances in cellular and organismal biophysics enabled by these technologies. - Comprehensive coverage of micro and nano-system technology and application to biophysical studies of cells and small organisms. - Highlights the most recent advances in cellular and organismal biophysics enabled by micro and nano systems. - Insightful outlook on future directions and trends in each chapter covering a sub-area of the book topic.

Book Essentials of Single Cell Analysis

Download or read book Essentials of Single Cell Analysis written by Fan-Gang Tseng and published by Springer. This book was released on 2016-01-21 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of single-cell isolation, separation, injection, lysis and dynamics analysis as well as a study of their heterogeneity using different miniaturized devices. As an important part of single-cell analysis, different techniques including electroporation, microinjection, optical trapping, optoporation, rapid electrokinetic patterning and optoelectronic tweezers are described in detail. It presents different fluidic systems (e.g. continuous micro/nano-fluidic devices, microfluidic cytometry) and their integration with sensor technology, optical and hydrodynamic stretchers etc., and demonstrates the applications of single-cell analysis in systems biology, proteomics, genomics, epigenomics, cancer transcriptomics, metabolomics, biomedicine and drug delivery systems. It also discusses the future challenges for single-cell analysis, including the advantages and limitations. This book is enjoyable reading material while at the same time providing essential information to scientists in academia and professionals in industry working on different aspects of single-cell analysis. Dr. Fan-Gang Tseng is a Distinguished Professor of Engineering and System Science at the National Tsing Hua University, Taiwan. Dr. Tuhin Subhra Santra is a Research Associate at the California Nano Systems Institute, University of California at Los Angeles, USA.

Book Integrated Microfluidic Device for Single cell High Throughput Screening in Dynamic Gene Expression Analysis

Download or read book Integrated Microfluidic Device for Single cell High Throughput Screening in Dynamic Gene Expression Analysis written by Lawrence Kwan Yeung Hui and published by . This book was released on 2008 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, interest in microfluidics has surged as applications have trended towards novel biological assays. Specifically, the ability of microfluidics to parallelize cellular studies through array-based chip designs has attracted researchers interested in investigating cellular function under a wide variety of environmental conditions. The capability of microfluidic devices to control microenvironment conditions and induce dynamic perturbation to cellular systems makes microfluidics (or "lab-on-a-chip") an attractive platform to study gene expression dynamics. In this project, the functionality of microfluidic technology is exploited to design and construct a device for isolation and observation of cells in high throughput. The integration of a concentration gradient with homogenous medium within each chamber was designed specifically to investigate gene regulation in Saccharomyces cerevisiae under various concentrations of chemical inducers. These devices were designed to sustain cells for extended periods of time with high temporal resolution to study dynamic gene expression in single cells. The device builds on previous studies by probing up to eight distinct cell cultures in parallel. The microfluidic platform was then used to study yeast cells at various levels of inducer perturbations. Further experimentation revealed the utility of a parallel gradient by producing an induction curve of the yeast response. Such high-throughput designs will prove essential to yeast systems biology research as it strives to understand the complex regulatory interactions that dictate cell function by probing vast regions of parameter space.

Book Handbook of Single Cell Technologies

Download or read book Handbook of Single Cell Technologies written by Tuhin Subhra Santra and published by Springer. This book was released on 2021-10-29 with total page 1096 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a brief overview of single-cell analysis using recent advanced technologies. The different sections cover different aspect of single cell analysis and applications with their advantages, limitations, and future challenges. The book has covered how different physical energies such as optical, electrical, and mechanical energy have been applied for single cell therapy and analysis. The recent advanced micro/nanofluidic devices have been employed for single-cell counting, manipulation, cultivation, separation, isolation, lysis, printing and patterning and host-viral interaction at single-cell level. Various chemical approaches for single-cell analysis have been discussed, such as liposome mediated materials transfer at single-cell and their analysis, discovery of antibody via single-cell, high-throughput screening of antigen-specific antibody-secreting cells, and biomolecular secretion analysis of individual cells. Moreover, different single-cell omics such as genomics, proteomics and transcriptomics have been discussed using microfluidic technologies as well as conventional approaches. The role of single cell analysis in system biology and biocatalysis have been discussed in detail. The book describes single-cell phenotyping of heterogeneous tissue, stimulation, and instant reaction quenching technology for biochemical kinetic analysis, large scale single-cell assay for the identification of biocatalysts and analytical techniques for single-cell studies in microbiology. The role of single-cell analysis in cancer, such as single-cell adhesion and cancer progression, single-cell technologies for cancer therapy, analytical technology for single cancer cell analysis, and biophysical markers for cancer cell analysis have been discussed. The flow cytometry based high throughput single-cell analysis have been well emphasized. Finally this book has covered single-cell electrophysiology, single-cell sensing and size measurement using mechanical and microwave resonators, molecular force spectroscopy for cell adhesion measurement, micro-tweezers and force microscopy techniques for single-cell mechanobiological analysis, mass spectrometry and acoustic tweezers for single-cell manipulation and analysis. This book is intended for academic and industrial researchers, undergraduate and graduate students in the fields of biomedical engineering, bio-micro/nanoengineering, and bio-micro/nano fabrication for single-cell analysis. It can be used for courses on bio-MEMS/bio-NEMS, biomicrofluidics, bio-micro/nanofabrications, micro/nanofluidics, biophysics, single cell analysis, bionanotechnology, drug delivery systems and biomedical microdevices. Collective contributions from respected experts, have brought diverse aspects of single-cell technologies in a single hand book. This will benefit researchers and practitioners in the biotechnology industry for different diseases analysis, therapeutics, diagnostics, drug discovery, drug screening etc. In addition to hard copies, the book will be available online and will often be updated by the authors.

Book Applications of Microfluidic Systems in Biology and Medicine

Download or read book Applications of Microfluidic Systems in Biology and Medicine written by Manabu Tokeshi and published by Springer. This book was released on 2019-04-25 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on state-of-the-art microfluidic research in medical and biological applications. The top-level researchers in this research field explain carefully and clearly what can be done by using microfluidic devices. Beginners in the field —undergraduates, engineers, biologists, medical researchers—will easily learn to understand microfluidic-based medical and biological applications. Because a wide range of topics is summarized here, it also helps experts to learn more about fields outside their own specialties. The book covers many interesting subjects, including cell separation, protein crystallization, single-cell analysis, cell diagnosis, point-of-care testing, immunoassay, embyos/worms on a chip and organ-on-a-chip. Readers will be convinced that microfluidic devices have great potential for medical and biological applications.

Book Microfluidic Devices for Biomedical Applications

Download or read book Microfluidic Devices for Biomedical Applications written by Xiujun (James) Li and published by Woodhead Publishing. This book was released on 2021-08-05 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidic Devices for Biomedical Applications, Second Edition provides updated coverage on the fundamentals of microfluidics, while also exploring a wide range of medical applications. Chapters review materials and methods, microfluidic actuation mechanisms, recent research on droplet microfluidics, applications in drug discovery and controlled-delivery, including micro needles, consider applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds, and cover the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. This book is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries. - Discusses the fundamentals of microfluidics or lab-on-a-chip (LOC) and explores a wide range of medical applications - Considers materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies - Details applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and its role in developing tissue scaffolds, and stem cell engineering

Book Microfluidic Technologies for Human Health

Download or read book Microfluidic Technologies for Human Health written by Utkan Demirci and published by World Scientific. This book was released on 2012 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ch. 1. A microscale bioinspired cochlear-like sensor / Robert D. White, Robert Littrell, and Karl Grosh -- ch. 2. Systematic evaluation of the efficiencies of proteins and chemicals in pharmaceutical applications / Morgan Hamon and Jong Wook Hong -- ch. 3. Microfluidic glucose sensors / Jithesh V. Veetil [und weitere] -- ch. 4. Applications of microfabrication and microfluidic techniques in mesenchymal stem cell research / Abhijit Majumder [und weitere] -- ch. 5. Patient-specific modeling of low-density lipoprotein transport in coronary arteries / Ufuk Olgac -- ch. 6. Point-of-care microdevices for global health diagnostics of infectious diseases / Sau Yin Chin [und weitere] -- ch. 7. Integrated microfluidic sample preparation for chip-based molecular diagnostics / Jane Y. Zhang [und weitere] -- ch. 8. Microfluidic devices for cellular proteomic studies / Yihong Zhan and Chang Lu -- ch. 9. Microfluidics for neuroscience: novel tools and future implications / Vivian M. Hernandez and P. Hande Ozdinler -- ch. 10. Microfluidics: on-chip platforms as in vitro disease models / Shan Gao, Erkin Seker, and Martin L. Yarmush -- ch. 11. Application of microfluidics in stem cell and tissue engineering / Sasha H. Bakhru, Christopher Highley, and Stefan Zappe -- ch. 12. Microfluidic "on-the-fly" fabrication of microstructures for biomedical applications / Edward Kang, Sau Fung Wong, and Sang-Hoon Lee -- ch. 13. Microfluidics as a promising tool toward distributed viral detection / Elodie Sollier and Dino Di Carlo -- ch. 14. Electrophoresis and dielectrophoresis for lab-on-a-chip (LOC) analyses / Yagmur Demircan, Gurkan Yilmaz, and Haluk Kulah -- ch. 15. Ultrasonic embossing of carbon nanotubes for the fabrication of polymer microfluidic chips for DNA sample purification / Puttachat Khuntontong, Min Gong, and Zhiping Wang -- ch. 16. Ferrofluidics / A. Rezzan Kose and Hur Koser -- ch. 17. Antibody-based blood bioparticle capture and separation using microfluidics for global health / ZhengYuan Luo [und weitere] -- ch. 18. Applications of quantum dots for fluorescence imaging in biomedical research / ShuQi Wang [und weitere]

Book Microfluidic Technologies for Miniaturized Analysis Systems

Download or read book Microfluidic Technologies for Miniaturized Analysis Systems written by Steffen Hardt and published by Springer Science & Business Media. This book was released on 2007-09-29 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses Lab-on-a-Chip devices. It focuses on microfluidic technologies that have emerged in the past decade. Coverage presents a comprehensive listing of the most promising microfluidic technologies in the Lab-on-a-Chip field. It also details technologies that can be viewed as toolboxes needed to set up complex Lab-on-a-Chip systems.

Book Microfluidics for Biological Applications

Download or read book Microfluidics for Biological Applications written by Wei-Cheng Tian and published by Springer Science & Business Media. This book was released on 2009-03-02 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics for Biological Applications provides researchers and scientists in the biotechnology, pharmaceutical, and life science industries with an introduction to the basics of microfluidics and also discusses how to link these technologies to various biological applications at the industrial and academic level. Readers will gain insight into a wide variety of biological applications for microfluidics. The material presented here is divided into four parts, Part I gives perspective on the history and development of microfluidic technologies, Part II presents overviews on how microfluidic systems have been used to study and manipulate specific classes of components, Part III focuses on specific biological applications of microfluidics: biodefense, diagnostics, high throughput screening, and tissue engineering and finally Part IV concludes with a discussion of emerging trends in the microfluidics field and the current challenges to the growth and continuing success of the field.

Book Microfluidics in Cell Biology Part C  Microfluidics for Cellular and Subcellular Analysis

Download or read book Microfluidics in Cell Biology Part C Microfluidics for Cellular and Subcellular Analysis written by and published by Academic Press. This book was released on 2018-11-22 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics in Cell Biology Part C, Volume 148, a new release in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Unique to this updated volume are three sections on microfluidics in various multi-cellular models, including microfluidics in cell monolayers/spheroids, microfluidics in organ on chips, and microfluidics in model organisms. Specific chapters discuss collective migration in microtubes, leukocyte adhesion dynamics on endothelial monolayers under flow, constrained spheroid for perfusion culture, cells in droplet arrays, heart on chips, kidney on chips, liver on chips, and more. - Contains contributions from experts in the field from across the world - Covers a wide array of topics on both mitosis and meiosis - Includes relevant, analysis based topics

Book The Individual Microbe  Single Cell Analysis and Agent Based Modelling

Download or read book The Individual Microbe Single Cell Analysis and Agent Based Modelling written by Johan H. J. Leveau and published by Frontiers Media SA. This book was released on 2019-02-19 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent technological advances in single-cell microbiology, using flow cytometry, microfluidics, x-ray fluorescence microprobes, and single-cell -omics, allow for the observation of individuals within populations. Simultaneously, individual-based models (or more generally agent-based models) allow for individual microbes to be simulated. Bridging these techniques forms the foundation of individual-based ecology of microbes (µIBE). µIBE has elucidated genetic and phenotypic heterogeneity that has important consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. Individual-based models can help us to understand how these sets of traits of individual microbes influence the above. This eBook compiles all publications from a recent Research Topic in Frontiers in Microbiology. It features recent research where individual observational and/or modelling techniques are applied to gain unique insights into the ecology of microorganisms. The Research Topic “The Individual Microbe: Single-Cell Analysis and Agent-Based Modelling” arose from the 2016 @ASM conference of the same name hosted by the American Society for Microbiology at its headquarters in Washington, D.C. We are grateful to ASM for funding and hosting this conference.

Book Cell Analysis on Microfluidics

Download or read book Cell Analysis on Microfluidics written by Jin-Ming Lin and published by Springer. This book was released on 2017-10-25 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed overview of the design, formatting, application, and development of microfluidic chips in the context of cell biology research, enumerating each element involved in microfluidics-based cell analysis, discussing its history, status quo, and future prospects, It also offers an extensive review of the research completed in the past decade, including numerous color figures. The individual chapters are based on the respective authors' studies and experiences, providing tips from the frontline to help researchers overcome bottlenecks in their own work. It highlights a number of cutting-edge techniques, such as 3D cell culture, microfluidic droplet technique, and microfluidic chip-mass spectrometry interfaces, offering a first-hand impression of the latest trends in the field and suggesting new research directions. Serving as both an elementary introduction and advanced guidebook, the book interests and inspires scholars and students who are currently studying microfluidics-based cell analysis methods as well as those who wish to do so.

Book Biosensors for Single Cell Analysis

Download or read book Biosensors for Single Cell Analysis written by Jian Chen and published by Academic Press. This book was released on 2021-10-26 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biosensors for Single-Cell Analysis explores a wide range of biosensor technologies and their applications in single-cell characterization and analysis. Sections cover key biophysical and chemical single-cell properties that consider proteomic, metabolic, electrical, mechanical and optical properties. Each chapter features key definitions and case studies, providing detailed guidance for researchers who want to replicate covered solutions in their work. Tutorial sections, evaluations of the current state-of-the-field and future developments are also included. Microfluidic approaches to characterization, such as microfluidic impedance flow cytometry and microfluidic flow cytometry are considered alongside more conventional approaches, such as mass spectroscopy, fluorescent and mass flow cytometry. Additionally, key types of biosensors are covered, including atomic force microscopy, micropipette aspiration, optical tweezers, microfluidic hydrodynamic stretchers, microfluidic constriction channel and microfluidic optical stretchers. - Includes chapters focused on key single-cell properties, such as proteomic, metabolic and mechanical characterization - Features case studies that illustrate the application of biosensors for single-cell analysis - Considers microfluidic approaches for each single-cell property discussed - Explores future directions for single-cell analysis and biosensor technology

Book 3D Electro Rotation of Single Cells

Download or read book 3D Electro Rotation of Single Cells written by Liang Huang and published by Morgan & Claypool Publishers. This book was released on 2019-12-26 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dielectrophoresis microfluidic chips have been widely used in various biological applications due to their advantages of convenient operation, high throughput, and low cost. However, most of the DEP microfluidic chips are based on 2D planar electrodes which have some limitations, such as electric field attenuation, small effective working regions, and weak DEP forces. In order to overcome the limitations of 2D planar electrodes, two kinds of thick-electrode DEP chips were designed to realize manipulation and multi-parameter measurement of single cells. Based on the multi-electrode structure of thick-electrode DEP, a single-cell 3D electro-rotation chip of "Armillary Sphere" was designed. The chip uses four thick electrodes and a bottom planar electrode to form an electric field chamber, which can control 3D rotation of single cells under different electric signal configurations. Electrical property measurement and 3D image reconstruction of single cells are achieved based on single-cell 3D rotation. This work overcomes the limitations of 2D planar electrodes and effectively solves the problem of unstable spatial position of single-cell samples, and provides a new platform for single-cell analysis. Based on multi-electrode structure of thick-electrode DEP, a microfluidic chip with optoelectronic integration was presented. A dual-fiber optical stretcher embedded in thick electrodes can trap and stretch a single cell while the thick electrodes are used for single-cell rotation. Stretching and rotation manipulation gives the chip the ability to simultaneously measure mechanical and electrical properties of single cells, providing a versatile platform for single-cell analysis, further extending the application of thick-electrode DEP in biological manipulation and analysis.

Book Microfluidic Devices for Biomedical Applications

Download or read book Microfluidic Devices for Biomedical Applications written by Xiujun (James) Li and published by Elsevier. This book was released on 2013-10-31 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics or lab-on-a-chip (LOC) is an important technology suitable for numerous applications from drug delivery to tissue engineering. Microfluidic devices for biomedical applications discusses the fundamentals of microfluidics and explores in detail a wide range of medical applications.The first part of the book reviews the fundamentals of microfluidic technologies for biomedical applications with chapters focussing on the materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies. Chapters in part two examine applications in drug discovery and controlled-delivery including micro needles. Part three considers applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds and stem cell engineering. The final part of the book covers the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis.Microfluidic devices for biomedical applications is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries. - Discusses the fundamentals of microfluidics or lab-on-a-chip (LOC) and explores in detail a wide range of medical applications - Considers materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies - Considers applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds and stem cell engineering