EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Minimal Surfaces  Geometric Analysis and Symplectic Geometry

Download or read book Minimal Surfaces Geometric Analysis and Symplectic Geometry written by Kenji Fukaya and published by . This book was released on 2002 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 1998-1999 programme year of the Japan-U.S. Mathematics Institute at the Johns Hopkins University, USA was devoted to minimal surfaces, geometric analysis, and symplectic geometry. The programme culminated in a week-long workshop and conference to discuss developments. This volume is a collection of articles written by the speakers. It presents extended or modified versions of the lectures delivered at the meeting. Each article provides a vivid account of contemporary research, with the information given ranging from introductory level to the most up-to-date results. Of special interest is a long survey article by K. Fukaya on applications of Floer homology to mirror symmetry. Also discussed are developments on the geometry of constant mean curvature one surfaces in hyperbolic 3-spaces of finite total curvature. The range of topics covered in the volume provides direction for further research in these rapidly developing areas. The book should be suitable for graduate students and researchers interested in differential and symplectic geometry.

Book Lectures on Symplectic Geometry

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Book Symplectic  Poisson  and Noncommutative Geometry

Download or read book Symplectic Poisson and Noncommutative Geometry written by Tohru Eguchi and published by Cambridge University Press. This book was released on 2014-08-25 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute.

Book Constant Mean Curvature Surfaces with Boundary

Download or read book Constant Mean Curvature Surfaces with Boundary written by Rafael López and published by Springer Science & Business Media. This book was released on 2013-08-31 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields. While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of “compact surfaces with boundaries,” narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs. The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems.

Book Geometric Relativity

    Book Details:
  • Author : Dan A. Lee
  • Publisher : American Mathematical Society
  • Release : 2021-12-20
  • ISBN : 1470466236
  • Pages : 377 pages

Download or read book Geometric Relativity written by Dan A. Lee and published by American Mathematical Society. This book was released on 2021-12-20 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in general relativity are essentially geometric in nature, in the sense that they can be understood in terms of Riemannian geometry and partial differential equations. This book is centered around the study of mass in general relativity using the techniques of geometric analysis. Specifically, it provides a comprehensive treatment of the positive mass theorem and closely related results, such as the Penrose inequality, drawing on a variety of tools used in this area of research, including minimal hypersurfaces, conformal geometry, inverse mean curvature flow, conformal flow, spinors and the Dirac operator, marginally outer trapped surfaces, and density theorems. This is the first time these topics have been gathered into a single place and presented with an advanced graduate student audience in mind; several dozen exercises are also included. The main prerequisite for this book is a working understanding of Riemannian geometry and basic knowledge of elliptic linear partial differential equations, with only minimal prior knowledge of physics required. The second part of the book includes a short crash course on general relativity, which provides background for the study of asymptotically flat initial data sets satisfying the dominant energy condition.

Book  J  Holomorphic Curves and Quantum Cohomology

Download or read book J Holomorphic Curves and Quantum Cohomology written by Dusa McDuff and published by American Mathematical Soc.. This book was released on 1994 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: J -holomorphic curves revolutionized the study of symplectic geometry when Gromov first introduced them in 1985. Through quantum cohomology, these curves are now linked to many of the most exciting new ideas in mathematical physics. This book presents the first coherent and full account of the theory of J -holomorphic curves, the details of which are presently scattered in various research papers. The first half of the book is an expository account of the field, explaining the main technical aspects. McDuff and Salamon give complete proofs of Gromov's compactness theorem for spheres and of the existence of the Gromov-Witten invariants. The second half of the book focuses on the definition of quantum cohomology. The authors establish that the quantum multiplication exists and is associative on appropriate manifolds. They then describe the Givental-Kim calculation of the quantum cohomology of flag manifolds, leading to quantum Chern classes and Witten's calculation for Grassmanians, which relates to the Verlinde algebra. The Dubrovin connection, Gromov-Witten potential on quantum cohomology, and curve counting formulas are also discussed.

Book Lagrangian Intersection Floer Theory

Download or read book Lagrangian Intersection Floer Theory written by Kenji Fukaya and published by American Mathematical Soc.. This book was released on 2010-06-21 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered $A_\infty$-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered $A_\infty$ algebras and $A_\infty$ bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-contained account of the general theory of Kuranishi structures is also included in the appendix of this volume.

Book Momentum Maps and Hamiltonian Reduction

Download or read book Momentum Maps and Hamiltonian Reduction written by Juan-Pablo Ortega and published by Springer Science & Business Media. This book was released on 2003-12-16 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Winner of the Ferran Sunyer i Balaguer Prize in 2000. * Reviews the necessary prerequisites, beginning with an introduction to Lie symmetries on Poisson and symplectic manifolds. * Currently in classroom use in Europe. * Can serve as a resource for graduate courses and seminars in Hamiltonian mechanics and symmetry, symplectic and Poisson geometry, Lie theory, mathematical physics, and as a comprehensive reference resource for researchers.

Book Minimal Submanifolds In Pseudo riemannian Geometry

Download or read book Minimal Submanifolds In Pseudo riemannian Geometry written by Henri Anciaux and published by World Scientific. This book was released on 2010-11-02 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemannian case.For the first time, this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian geometry, only assuming from the reader some basic knowledge about manifold theory. Several classical results, such as the Weierstrass representation formula for minimal surfaces, and the minimizing properties of complex submanifolds, are presented in full generality without sacrificing the clarity of exposition. Finally, a number of very recent results on the subject, including the classification of equivariant minimal hypersurfaces in pseudo-Riemannian space forms and the characterization of minimal Lagrangian surfaces in some pseudo-Kähler manifolds are given.

Book Geometric Aspects of Analysis and Mechanics

Download or read book Geometric Aspects of Analysis and Mechanics written by Erik P. van den Ban and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hans Duistermaat, an influential geometer-analyst, made substantial contributions to the theory of ordinary and partial differential equations, symplectic, differential, and algebraic geometry, minimal surfaces, semisimple Lie groups, mechanics, mathematical physics, and related fields. Written in his honor, the invited and refereed articles in this volume contain important new results as well as surveys in some of these areas, clearly demonstrating the impact of Duistermaat's research and, in addition, exhibiting interrelationships among many of the topics.

Book New Complex Analytic Methods in the Study of Non Orientable Minimal Surfaces in Rn

Download or read book New Complex Analytic Methods in the Study of Non Orientable Minimal Surfaces in Rn written by Antonio Alarcón and published by American Mathematical Soc.. This book was released on 2020-05-13 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: All the new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables the authors to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, they construct proper non-orientable conformal minimal surfaces in Rn with any given conformal structure, complete non-orientable minimal surfaces in Rn with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits n hyperplanes of CPn−1 in general position, complete non-orientable minimal surfaces bounded by Jordan curves, and complete proper non-orientable minimal surfaces normalized by bordered surfaces in p-convex domains of Rn.

Book Symplectic Topology and Floer Homology  Volume 1  Symplectic Geometry and Pseudoholomorphic Curves

Download or read book Symplectic Topology and Floer Homology Volume 1 Symplectic Geometry and Pseudoholomorphic Curves written by Yong-Geun Oh and published by Cambridge University Press. This book was released on 2015-08-27 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Published in two volumes, this is the first book to provide a thorough and systematic explanation of symplectic topology, and the analytical details and techniques used in applying the machinery arising from Floer theory as a whole. Volume 1 covers the basic materials of Hamiltonian dynamics and symplectic geometry and the analytic foundations of Gromov's pseudoholomorphic curve theory. One novel aspect of this treatment is the uniform treatment of both closed and open cases and a complete proof of the boundary regularity theorem of weak solutions of pseudo-holomorphic curves with totally real boundary conditions. Volume 2 provides a comprehensive introduction to both Hamiltonian Floer theory and Lagrangian Floer theory. Symplectic Topology and Floer Homology is a comprehensive resource suitable for experts and newcomers alike.

Book Riemannian Geometry and Geometric Analysis

Download or read book Riemannian Geometry and Geometric Analysis written by Jürgen Jost and published by Springer. This book was released on 2017-10-13 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the Bishop-Gromov volume growth theorem which elucidates the geometric role of Ricci curvature. From the reviews:“This book provides a very readable introduction to Riemannian geometry and geometric analysis... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome.” Mathematical Reviews “For readers familiar with the basics of differential geometry and some acquaintance with modern analysis, the book is reasonably self-contained. The book succeeds very well in laying out the foundations of modern Riemannian geometry and geometric analysis. It introduces a number of key techniques and provides a representative overview of the field.” Monatshefte für Mathematik

Book Current Trends in Transformation Groups

Download or read book Current Trends in Transformation Groups written by Anthony Bak and published by Springer Science & Business Media. This book was released on 2002-07-31 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of some of the most active topics in the theory of transformation groups over the past decades and stresses advances obtained in the last dozen years. The emphasis is on actions of Lie groups on manifolds and CW complexes. Manifolds and actions of Lie groups on them are studied in the linear, semialgebraic, definable, analytic, smooth, and topological categories. Equivalent vector bundles play an important role. The work is divided into fifteen articles and will be of interest to anyone researching or studying transformations groups. The references make it easy to find details and original accounts of the topics surveyed, including tools and theories used in these accounts.

Book Kuranishi Structures and Virtual Fundamental Chains

Download or read book Kuranishi Structures and Virtual Fundamental Chains written by Kenji Fukaya and published by Springer Nature. This book was released on 2020-10-16 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: The package of Gromov’s pseudo-holomorphic curves is a major tool in global symplectic geometry and its applications, including mirror symmetry and Hamiltonian dynamics. The Kuranishi structure was introduced by two of the authors of the present volume in the mid-1990s to apply this machinery on general symplectic manifolds without assuming any specific restrictions. It was further amplified by this book’s authors in their monograph Lagrangian Intersection Floer Theory and in many other publications of theirs and others. Answering popular demand, the authors now present the current book, in which they provide a detailed, self-contained explanation of the theory of Kuranishi structures. Part I discusses the theory on a single space equipped with Kuranishi structure, called a K-space, and its relevant basic package. First, the definition of a K-space and maps to the standard manifold are provided. Definitions are given for fiber products, differential forms, partitions of unity, and the notion of CF-perturbations on the K-space. Then, using CF-perturbations, the authors define the integration on K-space and the push-forward of differential forms, and generalize Stokes' formula and Fubini's theorem in this framework. Also, “virtual fundamental class” is defined, and its cobordism invariance is proved. Part II discusses the (compatible) system of K-spaces and the process of going from “geometry” to “homological algebra”. Thorough explanations of the extension of given perturbations on the boundary to the interior are presented. Also explained is the process of taking the “homotopy limit” needed to handle a system of infinitely many moduli spaces. Having in mind the future application of these chain level constructions beyond those already known, an axiomatic approach is taken by listing the properties of the system of the relevant moduli spaces and then a self-contained account of the construction of the associated algebraic structures is given. This axiomatic approach makes the exposition contained here independent of previously published construction of relevant structures.

Book String Math 2015

    Book Details:
  • Author : Si Li
  • Publisher : American Mathematical Soc.
  • Release : 2017-11-28
  • ISBN : 1470429519
  • Pages : 306 pages

Download or read book String Math 2015 written by Si Li and published by American Mathematical Soc.. This book was released on 2017-11-28 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the conference String-Math 2015, which was held from December 31, 2015–January 4, 2016, at Tsinghua Sanya International Mathematics Forum in Sanya, China. Two of the main themes of this volume are frontier research on Calabi-Yau manifolds and mirror symmetry and the development of non-perturbative methods in supersymmetric gauge theories. The articles present state-of-the-art developments in these topics. String theory is a broad subject, which has profound connections with broad branches of modern mathematics. In the last decades, the prosperous interaction built upon the joint efforts from both mathematicians and physicists has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side, as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side.

Book Geometry of Phase Spaces

Download or read book Geometry of Phase Spaces written by Jan J. Slawianowski and published by . This book was released on 1991 with total page 814 pages. Available in PDF, EPUB and Kindle. Book excerpt: Devoted to the classical analytical mechanics of systems with a finite number of degrees of freedom, with special attention given to some nonstandard problems, both theoretical and practical. Presents the geometric formulation of analytical mechanics in terms of tangent and cotangent bundles and symplectic and contact manifolds. In contrast to purely formal treatments, the author justifies in physical terms the symplectic structure presupposed by classical Hamiltonian mechanics. The result is that the well-known structures of the Hamilton-Jacobi theory are given a deep geometrical interpretation.