EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mid infrared Quantum Cascade Lasers for Chaos Secure Communications

Download or read book Mid infrared Quantum Cascade Lasers for Chaos Secure Communications written by Olivier Spitz and published by Springer Nature. This book was released on 2021-05-15 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mid-infrared domain is a promising optical domain because it holds two transparency atmospheric windows, as well as the fingerprint of many chemical compounds. Quantum cascade lasers (QCLs) are one of the available sources in this domain and have already been proven useful for spectroscopic applications and free-space communications. This thesis demonstrates how to implement a private free-space communication relying on mid-infrared optical chaos and this requires an accurate cartography of non-linear phenomena in quantum cascade lasers. This private transmission is made possible by the chaos synchronization of two twin QCLs. Chaos in QCLs can be generated under optical injection or external optical feedback. Depending on the parameters of the optical feedback, QCLs can exhibit several non-linear phenomena in addition to chaos. Similarities exist between QCLs and laser diodes when the chaotic dropouts are synchronized with an external modulation, and this effect is known as the entrainment phenomenon. With a cross-polarization reinjection technique, QCLs can generate all-optical square-waves. Eventually, it is possible to trigger optical extreme events in QCLs with tilted optical feedback. All these experimental results allow a better understanding of the non-linear dynamics of QCLs and will extend the potential applications of this kind of semiconductor lasers.

Book Nonlinear Photonics in Mid infrared Quantum Cascade Lasers

Download or read book Nonlinear Photonics in Mid infrared Quantum Cascade Lasers written by Louise Jumpertz and published by Springer. This book was released on 2017-08-31 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents the first comprehensive analysis of quantum cascade laser nonlinear dynamics and includes the first observation of a temporal chaotic behavior in quantum cascade lasers. It also provides the first analysis of optical instabilities in the mid-infrared range. Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which have become widely used in applications such as gas spectroscopy, free-space communications or optical countermeasures. Applying external perturbations such as optical feedback or optical injection leads to a strong modification of the quantum cascade laser properties. Optical feedback impacts the static properties of mid-infrared Fabry–Perot and distributed feedback quantum cascade lasers, inducing power increase; threshold reduction; modification of the optical spectrum, which can become either single- or multimode; and enhanced beam quality in broad-area transverse multimode lasers. It also leads to a different dynamical behavior, and a quantum cascade laser subject to optical feedback can oscillate periodically or even become chaotic. A quantum cascade laser under external control could therefore be a source with enhanced properties for the usual mid-infrared applications, but could also address new applications such as tunable photonic oscillators, extreme events generators, chaotic Light Detection and Ranging (LIDAR), chaos-based secured communications or unpredictable countermeasures.

Book Quantum Cascade Lasers

    Book Details:
  • Author : Jérôme Faist
  • Publisher : Oxford University Press
  • Release : 2013-03-14
  • ISBN : 0198528248
  • Pages : 321 pages

Download or read book Quantum Cascade Lasers written by Jérôme Faist and published by Oxford University Press. This book was released on 2013-03-14 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the physics, fabrication technology, and applications of the quantum cascade laser.

Book Mid Infrared and Terahertz Quantum Cascade Lasers

Download or read book Mid Infrared and Terahertz Quantum Cascade Lasers written by Dan Botez and published by Cambridge University Press. This book was released on 2023-06-30 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state-of-the-art overview of this rapidly expanding field, featuring fundamental theory, practical applications, and real-life examples.

Book Mid Infrared Quantum Dot Quantum Cascade Laser

Download or read book Mid Infrared Quantum Dot Quantum Cascade Laser written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density can compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.

Book Mid Infrared Quantum Cascade Lasers

    Book Details:
  • Author : Alfredo Bismuto
  • Publisher : LAP Lambert Academic Publishing
  • Release : 2012-02
  • ISBN : 9783846588376
  • Pages : 208 pages

Download or read book Mid Infrared Quantum Cascade Lasers written by Alfredo Bismuto and published by LAP Lambert Academic Publishing. This book was released on 2012-02 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work describes the work performed by the author at the ETH Zurich, under the supervision of Prof. Jerome Faist on the optimization of high performance quantum cascade lasers (QCLs) in the Mid-IR spectral region. The main factors influencing laser performance have therefore been analyzed. In particular the optimization of the laser design in order to improve the electron tranport and the optical gain. In addition a detailed analysis of the fabrication process is performed and a novel process scheme is presented for buried heterostructure lasers.

Book Quantum Cascade Lasers and Optical Metamaterials

Download or read book Quantum Cascade Lasers and Optical Metamaterials written by Matthew Escarra and published by LAP Lambert Academic Publishing. This book was released on 2013-01 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade (QC) lasers have application in areas such as medical diagnostics and homeland security. Optical metamaterials have novel interactions with light and potential application for sub-wavelength imaging and optical cloaking. This work first explores new approaches to designing QC lasers. High performance QC lasers are described with a voltage defect of only 19 meV, resulting in record voltage efficiency. Lasers with ultra-strong coupling attain 50% wall-plug efficiency. The thermoelectric effect is measured for the first time within QC lasers, informing further performance enhancements. This work then describes two efforts to improve mid-IR metamaterials. Negative refraction bandwidth and dispersion properties are improved through the use of multiple-metamaterial stacks. QC gain regions are added to these metamaterials to reduce their absorption loss. Finally, QC lasers are developed for trace gas sensing of CO2 isotopes, and a techno-economic model is used to value improved CO2 isotope-based sequestration leakage monitoring. QC laser applications in non-invasive tissue measurements, inter-planetary sensors, C60 spectroscopy, and IR countermeasures are also examined.

Book Broadly Tunable Mid infrared Quantum Cascade Lasers for Spectroscopic Applications

Download or read book Broadly Tunable Mid infrared Quantum Cascade Lasers for Spectroscopic Applications written by Richard Maulini and published by . This book was released on 2006 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mid infrared Quantum Cascade Lasers

Download or read book Mid infrared Quantum Cascade Lasers written by Yuri Victorovich Flores and published by . This book was released on 2015 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fabrication  Characterisation and Applications of Mid infrared Quantum Cascade Lasers

Download or read book Fabrication Characterisation and Applications of Mid infrared Quantum Cascade Lasers written by Longqi Zhou and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Cascade Lasers and Optical Metamaterials

Download or read book Quantum Cascade Lasers and Optical Metamaterials written by Matthew David Escarra and published by . This book was released on 2011 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Madame de Motteville

Download or read book Madame de Motteville written by and published by . This book was released on 1838 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Power Mid infrared Quantum Cascade Laser Array for Standoff Photoacoustic Chemical Detection

Download or read book High Power Mid infrared Quantum Cascade Laser Array for Standoff Photoacoustic Chemical Detection written by Xing Chen and published by . This book was released on 2013 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade lasers (QCLs) are compact, portable, powerful semiconductor laser sources with emission wavelengths from mid-infrared (mid-IR) to terahertz (THz) regions of the electromagnetic spectrum. Mid-IR (i.e. wavelengths from 3 to 20 μm) QCLs are of great importance in a wide range of applications such as trace gas sensing, environmental monitoring, free space communication, medical diagnosis and so on. High power QCLs are particularly important to applications such as infrared counter measure (IRCM) and standoff chemical detections. In such applications, the system performances critically depend on the amount of power a QCL can produce. This dissertation includes two major studies: the first part of the dissertation includes design, fabrication and characterization of high power mid-IR QCL arrays; the second part involves standoff chemical detection using QCLs as laser sources and photoacoustic effect as sensing technologies.

Book Characterization of Mid infrared Quantum Cascade Lasers

Download or read book Characterization of Mid infrared Quantum Cascade Lasers written by David Patrick Burghoff and published by . This book was released on 2009 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade lasers provide some of the highest output powers available for light in the mid-infrared range (from 3 to 8 m). As many of their applications require portability, designs that have a high wall-plug efficiency are essential, and were designed and grown by others to achieve this goal. However, because a large fraction of these devices did not operate at all, very few of the standard laser measurements could be performed to determine their properties. Therefore, measurements needed to be performed that could non-destructively probe the behavior of QCLs while still providing useful information. This thesis explores these types of measurements, all of which fall into the category of device spectroscopy. Through polarization-dependent transmission and photovoltaic spectroscopy, a large portion of the quantum mechanical bandstructure could be determined, along with many of the parameters characterizing crystal growth quality. In addition, high-resolution transmission spectroscopy was used to find the properties of the QCL waveguide. In order to find the correspondence between theory and experiment, bandstructure simulations were performed using a three-band p model, and two-dimensional electromagnetic simulations were performed to describe the laser's optical properties. These simulations were found to be in relatively good agreement with the device measurements, and any discrepancies were found to be consistent with problems in the growth and fabrication.

Book Mid infrared emitting Quantum Cascade Lasers on Metamorphic Buffer Layers

Download or read book Mid infrared emitting Quantum Cascade Lasers on Metamorphic Buffer Layers written by Ayushi Rajeev and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: When using conventional substrates, such as InP and GaAs, the materials constituting the superlattice (SL) core region of the quantum cascade laser (QCL) are constrained by strain-induced critical-thickness limitations. Metamorphic buffer layers (MBLs) can serve as "virtual substrates" with a designer-chosen surface lattice constant, thus expanding the compositional-design space for a variety of device structures, including short-wavelength QCLs. An optimized short-wavelength (3.4 [mu]m) single-phonon-resonant (SPR)+ miniband extraction QCL design, grown on an [InxGa1-xAs] MBL, is presented along with the optical and thermal device considerations in play. MBLs can be grown with a variety of graded regions such as linear composition grade from GaAs to [InxGa1-xAs] or by employing dislocation filters between Si substrate and InP. QCL and test superlattices' regrowth on these MBLs with the corresponding materials and device analysis, is presented in this work. In addition to the materials limitation for the design of QCL devices, the requirement to have the constituent layers (1-5 nm) to be precisely controlled in the various compositions and thicknesses, is a challenge. Interfacial grading in strained SLs is studied via atom probe tomography for SLs with various layer thicknesses and relative lattice strains. The tip reconstructions are analyzed by fitting the interfaces to diffusion profiles. Mechanisms possible for the observed interdiffusion profile, such as surface segregation and/or bulk diffusion, are discussed. With an understanding of the compositional gradient at the interfaces, together with optimized QCL designs and regrowth on the MBLs, short-wavelength QCLs with high performances can be achieved