EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Microwave and Optical Waveguide Analysis by the Finite Element Method

Download or read book Microwave and Optical Waveguide Analysis by the Finite Element Method written by F. Aníbal Fernández and published by . This book was released on 1996 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a method which can be implemented on a personal computer for providing a complete description of the spectrum of microwave and optical waveguides, including propagating, evanescent and radiating modes. Full details of the mathematical formulation and its finite element implementation are given together with a variety of examples. It also provides ideas on how to solve sparse matrix eigenvalue problems more quickly and a number of state-of-the-art examples in microwaves and optoelectronics.

Book Microwave And Optical Waveguide Analysis By The Finite Element Method

Download or read book Microwave And Optical Waveguide Analysis By The Finite Element Method written by F.A. Fernandez and published by . This book was released on with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Methods for Nonlinear Optical Waveguides

Download or read book Finite Element Methods for Nonlinear Optical Waveguides written by Xin-Hua Wang and published by Routledge. This book was released on 2019-06-14 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides researchers at the forefront of nonlinear optical technologies with robust procedures and software for the systematic investigation of the fundamental phenomena in nonlinear optical waveguide structures. A full vectorial electromagnetic formulation is adopted and the conditions under which simplification to a scalar formulation is possible are clearly indicated. The need to model the dielectric saturation properly is identified, and improved algorithms are presented for obtaining the complete power dispersion curve of structures exhibiting bistability. As the stability analysis of nonlinear modes is crucial to the development of nonlinear model methods, an effective procedure to investigate the propagation of the scalar nonlinear waves in 3D is another important feature of the book. All of the procedures described, as well as an automatic mesh generator for the finite element method, are incorporated into a software package which is included with this book.

Book Integrated Optics

    Book Details:
  • Author : Robert G. Hunsperger
  • Publisher : Springer Science & Business Media
  • Release : 2009-04-29
  • ISBN : 0387897755
  • Pages : 525 pages

Download or read book Integrated Optics written by Robert G. Hunsperger and published by Springer Science & Business Media. This book was released on 2009-04-29 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Optics explains the subject of optoelectronic devices and their use in integrated optics and fiber optic systems. The approach taken is to emphasize the physics of how devices work and how they can be (and have been) used in various applications as the field of optoelectronics has progressed from microphotonics to nanophotonics. Illustrations and references from technical journals have been used to demonstrate the relevance of the theory to currently important topics in industry. By reading this book, scientists, engineers, students and engineering managers can obtain an overall view of the theory and the most recent technology in Integrated Optics.

Book Multigrid Finite Element Methods for Electromagnetic Field Modeling

Download or read book Multigrid Finite Element Methods for Electromagnetic Field Modeling written by Yu Zhu and published by John Wiley & Sons. This book was released on 2006-03-10 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.

Book Introduction to Optical Waveguide Analysis

Download or read book Introduction to Optical Waveguide Analysis written by Kenji Kawano and published by John Wiley & Sons. This book was released on 2004-04-05 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete survey of modern design and analysis techniques for optical waveguides This volume thoroughly details modern and widely accepted methods for designing the optical waveguides used in telecommunications systems. It offers a straightforward presentation of the sophisticated techniques used in waveguide analysis and enables a quick grasp of modern numerical methods with easy mathematics. The book is intended to guide the reader to a comprehensive understanding of optical waveguide analysis through self-study. This comprehensive presentation includes: * An extensive and exhaustive list of mathematical manipulations * Detailed explanations of common design methods: finite element method (FEM), finite difference method (FDM), beam propagation method (BPM), and finite difference time-domain method (FD-TDM) * Explanations for numerical solutions of optical waveguide problems with sophisticated techniques used in modern computer-aided design (CAD) software * Solutions to Maxwell's equations and the Schrodinger equation The authors provide excellent self-study material for practitioners, researchers, and students, while also presenting detailed mathematical manipulations that can be easily understood by readers who are unfamiliar with them. Introduction to Optical Waveguide Analysis presents modern design methods in a comprehensive and easy-to-understand format.

Book Computational Mechanics

Download or read book Computational Mechanics written by Zhenhan Yao and published by 清华大学出版社有限公司. This book was released on 2004 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Finite Element Method in Electromagnetics

Download or read book The Finite Element Method in Electromagnetics written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-02-18 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Book International Workshop on Finite Elements for Microwave Engineering

Download or read book International Workshop on Finite Elements for Microwave Engineering written by Roberto D. Graglia and published by Firenze University Press. This book was released on 2016-05-09 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: When Courant prepared the text of his 1942 address to the American Mathematical Society for publication, he added a two-page Appendix to illustrate how the variational methods first described by Lord Rayleigh could be put to wider use in potential theory. Choosing piecewise-linear approximants on a set of triangles which he called elements, he dashed off a couple of two-dimensional examples and the finite element method was born. Finite element activity in electrical engineering began in earnest about 1968-1969. A paper on waveguide analysis was published in Alta Frequenza in early 1969, giving the details of a finite element formulation of the classical hollow waveguide problem. It was followed by a rapid succession of papers on magnetic fields in saturable materials, dielectric loaded waveguides, and other well-known boundary value problems of electromagnetics. In the decade of the eighties, finite element methods spread quickly. In several technical areas, they assumed a dominant role in field problems. P.P. Silvester, San Miniato (PI), Italy, 1992 Early in the nineties the International Workshop on Finite Elements for Microwave Engineering started. This volume contains the history of the Workshop and the Proceedings of the 13th edition, Florence (Italy), 2016 . The 14th Workshop will be in Cartagena (Colombia), 2018.

Book Optical Waveguide Theory by the Finite Element Method

Download or read book Optical Waveguide Theory by the Finite Element Method written by Masanori Koshiba and published by Springer. This book was released on 2012-11-07 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in the field of guided-wave optics, such as fiber optics and integrated optics, have included the introduction of arbitrarily-shaped optical waveguides which, in many cases, also happened to be arbitrarily inhomogeneous, dissipative, anisotropic, and/or nonlinear. Most of such cases of waveguide arbitrariness do not lend themselves to analytical so lutions; hence, computational tools for modeling and simulation are es sential for successful design, optimization, and realization of the optical waveguides. For this purpose, various numerical techniques have been de veloped. In particular, the finite element method (FEM) is a powerful and efficient tool for the most general (i. e. , arbitrarily-shaped, inhomogeneous, dissipative, anisotropic, and nonlinear) optical waveguide problem. Its use in industry and research is extensive, and indeed it could be said that with out it many optical waveguide problems would be incapable of solution. This book is intended for students, engineers, designers, and techni cal managers interested in a detailed description of the FEM for optical waveguide analysis. Starting from a brief review of electromagnetic theory, the first chapter provides the concepts of the FEM and its fundamentals. In addition to conventional elements, i. e. , line elements, triangular elements, tetrahedral elements, ring elements, and triangular ring elements which are utilized for one-dimensional, two-dimensional, three-dimensional, axisymmetric two dimensional, and axisymmetric three-dimensional problems, respectively, special-purpose elements, such as isoparametric elements, edge elements, infinite elements, and boundary elements, are also introduced.

Book Finite Element Software for Microwave Engineering

Download or read book Finite Element Software for Microwave Engineering written by Tatsuo Itoh and published by Wiley-Interscience. This book was released on 1996-08-23 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element methods have become essential design tools for managing the complex structures and devices needed in modern microwave technology. Long the preferred techniques of both researchers and engineers, their migration from research lab to routine industrial use has been accelerated by hardware and software improvements. The last decade has seen the widespread availability of good commercial finite element programs for an extensive range of applications. Finite Element Software for Microwave Engineering provides the first comprehensive overview of this burgeoning field. With its unique focus on current and future industrial applications rather than on mathematical methodology, this book is an invaluable complement to the existing literature on finite element methods. Directed to practicing engineers and researchers, the book describes user experience with current software, shows how existing programs can be used to solve problems not foreseen by their designers, and attempts to predict which methods may appear in the commercial products of tomorrow.

Book Optical Waveguide Theory by the Finite Element Method

Download or read book Optical Waveguide Theory by the Finite Element Method written by Masanori Koshiba and published by Springer. This book was released on 2014-01-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in the field of guided-wave optics, such as fiber optics and integrated optics, have included the introduction of arbitrarily-shaped optical waveguides which, in many cases, also happened to be arbitrarily inhomogeneous, dissipative, anisotropic, and/or nonlinear. Most of such cases of waveguide arbitrariness do not lend themselves to analytical so lutions; hence, computational tools for modeling and simulation are es sential for successful design, optimization, and realization of the optical waveguides. For this purpose, various numerical techniques have been de veloped. In particular, the finite element method (FEM) is a powerful and efficient tool for the most general (i. e. , arbitrarily-shaped, inhomogeneous, dissipative, anisotropic, and nonlinear) optical waveguide problem. Its use in industry and research is extensive, and indeed it could be said that with out it many optical waveguide problems would be incapable of solution. This book is intended for students, engineers, designers, and techni cal managers interested in a detailed description of the FEM for optical waveguide analysis. Starting from a brief review of electromagnetic theory, the first chapter provides the concepts of the FEM and its fundamentals. In addition to conventional elements, i. e. , line elements, triangular elements, tetrahedral elements, ring elements, and triangular ring elements which are utilized for one-dimensional, two-dimensional, three-dimensional, axisymmetric two dimensional, and axisymmetric three-dimensional problems, respectively, special-purpose elements, such as isoparametric elements, edge elements, infinite elements, and boundary elements, are also introduced.

Book Finite Element Modeling Methods for Photonics

Download or read book Finite Element Modeling Methods for Photonics written by B. M. Azizur Rahman and published by Artech House. This book was released on 2013-08-01 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astronomy, and sensing, to chemistry, imaging, and biomedical R&D. This book emphasizes practical, problem-solving applications and includes real-world examples to assist readers in understanding how mathematical concepts translate to computer code for finite element-based methods applicable to a range of photonic structures. In addition, this is the perfect support to anyone using the COMSOL Multiphysics© RF Module.

Book Finite Element Methods for Nonlinear Optical Waveguides

Download or read book Finite Element Methods for Nonlinear Optical Waveguides written by Xin-Hua Wang and published by Routledge. This book was released on 2019-06-14 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides researchers at the forefront of nonlinear optical technologies with robust procedures and software for the systematic investigation of the fundamental phenomena in nonlinear optical waveguide structures. A full vectorial electromagnetic formulation is adopted and the conditions under which simplification to a scalar formulation is possible are clearly indicated. The need to model the dielectric saturation properly is identified, and improved algorithms are presented for obtaining the complete power dispersion curve of structures exhibiting bistability. As the stability analysis of nonlinear modes is crucial to the development of nonlinear model methods, an effective procedure to investigate the propagation of the scalar nonlinear waves in 3D is another important feature of the book. All of the procedures described, as well as an automatic mesh generator for the finite element method, are incorporated into a software package which is included with this book.

Book Quick Finite Elements for Electromagnetic Waves

Download or read book Quick Finite Elements for Electromagnetic Waves written by Giuseppe Pelosi and published by Artech House. This book was released on 2009 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classic 1998 Artech House book, Quick Finite Elements for Electromagnetic Waves, has now been revised and expanded to bring you up-to-date with the latest developments in the Field. You find brand new discussions on finite elements in 3D, 3D resonant cavities, and 3D waveguide devices. Moreover, the second edition supplies you with MATLAB code, making this resource easier to comprehend and use for your projects in the field. This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM). Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation. With this unique book and software set in hand, you can compute the dispersion diagram of arbitrarily shaped inhomogeneous isotropic lossless or lossy guiding structures, analyze E- and H-plane waveguide discontinuities and devices, and understand the reflection from and transmission through simple 2D and 3D inhomogeneous periodic structures. CD-ROM Included! Easy-to-use finite element software contains ready-made MATLAB and FORTRAN source code that you can use immediately to solve a wide range of microwave and EM problems. The package is fully compatible with Internet "freeware, " so you can perform advanced engineering functions without having to purchase expensive pre- and post-processing tools.

Book Photonics Modelling and Design

Download or read book Photonics Modelling and Design written by Slawomir Sujecki and published by CRC Press. This book was released on 2018-09-03 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photonics Modeling and Design delivers a concise introduction to the modeling and design of photonic devices. Assuming a general knowledge of photonics and the operating principles of fibre and semiconductor lasers, this book: Describes the analysis of the light propagation in dielectric media Discusses heat diffusion and carrier transport Applies the presented theory to develop fibre and semiconductor laser models Addresses the propagation of short optical pulses in optical fibres Puts all modeling into practical context with examples of devices currently in development or on the market Providing hands-on guidance in the form of MATLAB® scripts, tips, and other downloadable content, Photonics Modeling and Design is written for students and professionals interested in modeling photonic devices either for gaining a deeper understanding of the operation or to optimize the design.

Book Fundamentals of Optical Waveguides

Download or read book Fundamentals of Optical Waveguides written by Katsunari Okamoto and published by Elsevier. This book was released on 2010-08-04 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. Exceptional new chapter on Arrayed-Waveguide Grating (AWG) In-depth discussion of Photonic Crystal Fibers (PCFs) Thorough explanation of Multimode Interference Devices (MMI) Full coverage of polarization Mode Dispersion (PMD)