Download or read book Microstructure and Tensile Properties of BN SiC Coated Hi Nicalon and Sylramic SiC Fiber Preforms written by and published by . This book was released on 2001 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Microstructure and Tensile Properties of BN SiC Coated Hi Nicalon and Sylramic SiC Fiber Preforms Revised written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-19 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: Batch to batch and within batch variations, and the influence of fiber architecture on room temperature physical and tensile properties of BN/SiC coated Hi-Nicalon and Sylramic SiC fiber preform specimens were determined. The three fiber architectures studied were plain weave (PW), 5-harness satin (5HS), and 8-harness satin (8HS). Results indicate that the physical properties vary up to 10 percent within a batch, and up to 20 percent between batches of preforms. Load-reload (Hysteresis) and acoustic emission methods were used to analyze damage accumulation occurring during tensile loading. Early acoustic emission activity, before observable hysteretic behavior, indicates that the damage starts with the formation of nonbridged tunnel cracks. These cracks then propagate and intersect the load bearing "0 deg" fibers giving rise to hysteretic behavior. For the Hi-Nicalon preform specimens, the onset of "0 deg" bundle cracking stress and strain appeared to be independent of the fiber architecture. Also, the "0 deg" fiber bundle cracking strain remained nearly the same for the preform specimens of both fiber types. TEM analysis indicates that the CVI BN interface coating is mostly amorphous and contains carbon and oxygen impurities, and the CVI SiC coating is crystalline. No reaction exists between the CVI BN and SiC coating. Bhatt, Ramakrishna T. and Chen, Yuan L. and Morscher, Gregory N. Glenn Research Center NASA/TM-2001-210695/REV1, E-12626-1/REV1, NAS 1.15:210695/REV1
Download or read book Microstructure and Tensile Properties of BN SiC Coated Hi Nicalon and Sylramic SiC Fiber Preforms written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-19 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: Batch to batch and within batch variations, and the influence of fiber architecture on room temperature physical and tensile properties of BN/SiC coated Hi-Nicalon and Sylramic SiC fiber preform specimens were determined. The three fiber architectures studied were plain weave (PW), 5-harness satin (5HS) and 8-harness satin (8HS) Results indicate that the physical properties vary up to 10 percent within a batch, and up to 20 percent between batches of preforms. Load-reload (Hysteresis) and acoustic emission methods were used to analyze damage accumulation occurring during tensile loading. Early acoustic emission activity, before observable hysteretic behavior, indicates that the damage starts with the formation of nonbridged tunnel cracks. These cracks then propagate and intersect the load bearing "0" fibers giving rise to hysteretic behavior, For the Hi-Nicalon preform specimens, the onset of "0" bundle cracking stress and strain appeared to be independent of the fiber architecture. Also, the "0" fiber bundle cracking strain remained nearly the same for the preform specimens of both fiber types. Transmission Electron Microscope (TEM) analysis indicates that the Chemical Vapor Infiltration (CVI) Boron Nitride (BN) interface coating is mostly amorphous and contains carbon and oxygen impurities, and the CVI SiC coating is crystalline. No reaction exists between the CVI BN and SiC coating. Bhatt, Ramakrishna T. and Chen, Yuan L. and Morscher, Gregory N. Glenn Research Center NASA/TM-2001-210695, NAS 1.15:210695, E-12626
Download or read book TMS 2013 142nd Annual Meeting and Exhibition written by The Minerals, Metals & Materials Society (TMS) and published by John Wiley & Sons. This book was released on 2013-02-22 with total page 1238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting papers from the 2013 annual meeting of The Minerals, Metals & Materials Society (TMS), this volume covers developments in all aspects of high temperature electrochemistry, from the fundamental to the empirical and from the theoretical to the applied.
Download or read book Effects of High Temperature Argon Heat Treatment on Tensile Strength and Microstructure of BN SiC Coated SiC Fiber Preforms written by and published by . This book was released on 1999 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preforms of BN/SiC coated Hi-Nicalon and Sylramic SiC fibers were heat treated under 0.1 MPa argon pressure between 1000 deg to 1800 deg C for 1 and 100h. The effects of high temperature exposure on physical dimensions, weight, room temperature tensile strength, and microstructure of preforms have been studied. Both preforms showed shrinkage and weight loss, and microstructural changes beyond 1000 deg C. After 100 hr exposure, the Hi-Nicalon preforms showed strength degradation beyond 1200 deg C. The mechanisms of the strength degradation appear to be grain growth of the SiC fibers and crystallization of the BN coating. After 100 hr, the Sylramic preforms heat treated to 1000 deg C retained their as-produced strength while some of those heat-treated between 1000 deg and 1800 deg C showed strength degradation and others did not. At 1800 deg C, the ultimate tensile strength decreased with increasing time of exposure. Reasons for strength degradation of Sylramic preforms are being investigated.
Download or read book Heat Treatment Effects on Microstructure of SiC Fiber Preforms written by and published by . This book was released on 1999 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preforms of BN/SiC coated Sylramic SiC fibers were heat treated at 1420 deg, 1600 deg, and 1800 deg C in 0.1 MPa argon or at 1800 deg C in 103 MPa nitrogen for 1 h. Optical, SEM, and TEM techniques were used to analyze the effects of environmental exposure on constituent microstructure of the preforms. TEM analysis of the as-received preforms indicates that the CVI BN coating is predominantly amorphous with small amounts of microcrystalline BN grains, and that the SiC coating on top of the BN coating and SiC fibers is polycrystalline. With increasing temperature of exposure from 1420 deg to 1800 deg C, the preforms heat treated in argon showed increasing amounts of crystalline BN in the CVI BN coating, and coarsening of SiC grains in the CVI SiC coating and SiC fibers. On the other hand, the preforms heal treated in 103 MPa nitrogen at 1800 deg C for 1 h showed microstructural changes inside the fiber tows similar to those heat treated at 1800 deg C in 0.1 MPa argon for 1 h, but the same preforms on the outer periphery of the tows showed reaction between nitrogen and the CVI SiC coating to form Si3N4.
Download or read book Microstructural Chemical and Mechanical Characterization of Polymer Derived Hi Nicalon Fibers with Surface Coatings written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-05 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: Room temperature tensile strengths of as-received Hi-Nicalon fibers and those having BN/SiC, p-BN/SiC, and p-B(Si)N/SiC surface coatings, deposited by chemical vapor deposition, were measured using an average fiber diameter of 13.5 microns. The Weibull statistical parameters were determined for each fiber. The average tensile strength of uncoated Hi-Nicalon on was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. Strength of fibers coated with BN/SiC did not change. However, coat with p-BN/SiC and p-B(Si)N/SiC surface layers showed strength loss of approx. 10 and 35 percent, respectively, compared with as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive x-ray spectroscopy. The BN coating was contaminated with a large concentration of carbon and some oxygen. In contrast, p-BN, p-B(Si)N, and SiC coatings did not show any contamination. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction. Hi-Nicalon fiber consists of the P-SIC nanocrystals ranging in size from 1 to 30 nm embedded in an amorphous matrix. TEM analysis of the BN coating revealed four distinct layers with turbostatic structure. The p-BN layer was turbostratic and showed considerable preferred orientation. The p-B(Si)N was glassy and the silicon and boron were uniformly distributed. The silicon carbide coating was polycrystalline with a columnar structure along the growth direction. The p-B(Si)N/SiC coatings were more uniform, less defective and of better quality than the BN/SiC or the p-BN/SiC coatings. Bansal, Narottam P. and Chen, Yuan L. Glenn Research Center RTOP 523-21-31...
Download or read book Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi Nicalon Sic Fiber Reinforced Reaction Bonded Silicon Nitride Composite written by National Aeronautics and Space Adm Nasa and published by Independently Published. This book was released on 2018-09-27 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model. Bhatt, Ramakrishana T. and Hull, David R. and Eldridge, Jeffrey I. and Babuder, Raymond Glenn Research Center NASA/TM-2000-210211, E-12330, NAS 1.15:210211
Download or read book Silicon Effects on Properties of Melt Infiltrated Sic Sic Composites written by National Aeronautics and Space Adm Nasa and published by Independently Published. This book was released on 2018-09-25 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon effects on tensile and creep properties, and thermal conductivity of Hi-Nicalon SiC/SiC composites have been investigated. The composites consist of 8 layers of 5HS 2-D woven preforms of BN/SiC coated Hi-Nicalon fiber mats and a silicon matrix, or a mixture of silicon matrix and SiC particles. The Hi-Nicalon SiC/silicon and Hi-Nicalon SiC/SiC composites contained about 24 and 13 vol% silicon, respectively. Results indicate residual silicon up to 24 vol% has no significant effect on creep and thermal conductivity, but does decrease the primary elastic modulus and stress corresponding to deviation from linear stress-strain behavior. Bhatt, Ramakrishna T. and Gyekenyesi, John Z. and Hurst, Janet B. Glenn Research Center NASA/TM-2000-210034, E-12231, NAS 1.15:210034
Download or read book High Temperature Tensile Properties of Unidirectional Hi Nicalon Celsian Composites in Air written by National Aeronautics and Space Adm Nasa and published by Independently Published. This book was released on 2018-09-27 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: High temperature tensile properties of unidirectional BN/SiC-coated Hi-Nicalon SiC fiber reinforced celsian matrix composites have been measured from room temperature to 1200 C (2190 F) in air. Young's modulus, the first matrix cracking stress, and the ultimate strength decreased from room temperature to 1200 C (2190 F). The applicability of various micromechanical models, in predicting room temperature values of various mechanical properties for this CMC, has also been investigated. The simple rule of mixtures produced an accurate estimate of the primary composite modulus. The first matrix cracking stress estimated from ACK theory was in good agreement with the experimental value. The modified fiber bundle failure theory of Evans gave a good estimate of the ultimate strength. Gyekenyesi, John Z. and Bansal, Narottam P. Glenn Research Center NASA/TM-2000-210214, NAS 1.15:210214, E-12333
Download or read book Characterizing the Properties of a Woven SiC SiC Composite Using W CEMCAN Computer Code written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-15 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: A micromechanics based computer code to predict the thermal and mechanical properties of woven ceramic matrix composites (CMC) is developed. This computer code, W-CEMCAN (Woven CEramic Matrix Composites ANalyzer), predicts the properties of two-dimensional woven CMC at any temperature and takes into account various constituent geometries and volume fractions. This computer code is used to predict the thermal and mechanical properties of an advanced CMC composed of 0/90 five-harness (5 HS) Sylramic fiber which had been chemically vapor infiltrated (CVI) with boron nitride (BN) and SiC interphase coatings and melt-infiltrated (MI) with SiC. The predictions, based on the bulk constituent properties from the literature, are compared with measured experimental data. Based on the comparison. improved or calibrated properties for the constituent materials are then developed for use by material developers/designers. The computer code is then used to predict the properties of a composite with the same constituents but with different fiber volume fractions. The predictions are compared with measured data and a good agreement is achieved. Murthy, Pappu L. N. and Mital, Subodh K. and DiCarlo, James A. Glenn Research Center NASA/TM-1999-209173, NAS 1.15:209173, E-11680
Download or read book Raman Study of Uncoated and P Bn Sic Coated Hi Nicalon Fiber Reinforced Celsian Matrix Composites Part 1 Distribution and Nanostructure of Different written by National Aeronautics and Space Adm Nasa and published by Independently Published. This book was released on 2018-09-26 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hi-Nicalon fiber reinforced celsian matrix composites were characterized by Raman spectroscopy and imaging, using several laser wavelengths. Composite #1 is reinforced by as-received fibers while coatings of p-BN and SiC protect the fibers in composite #2. The matrix contains traces of the hexagonal phase of celsian, which is concentrated in the neighborhood of fibers in composite #1. Some free silicon was evident in the coating of composite #2 which might involve a {BN + SiC yields BNC + Si} "reaction" at the p-BN/SiC interface. Careful analysis of C-C peaks revealed no abnormal degradation of the fiber core in the composites. Gouadec, Gwenael and Colomban, Philippe and Bansal, Narottam P. Glenn Research Center NASA/TM-2000-210349, NAS 1.15:210349, E-12398
Download or read book Mechanical Chemical and Microstructural Characterization of Monazite Coated Silicon Carbide Fibers written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-15 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensile strengths of as-received Hi-Nicalon and Sylramic fibers and those having monazite surface coatings, deposited by atmospheric pressure chemical vapor deposition, were measured at room temperature and the Weibull statistical parameters determined. The average tensile strengths of uncoated Hi-Nicalon and Sylramic fibers were 3.19 +/- 0.73 and 2.78 +/- 0.53 GPa with a Weibull modulus of 5.41 and 5.52, respectively. The monazite-coated Hi-Nicalon and Sylramic fibers showed strength loss of approx. 10 and 15 percent, respectively, compared with the as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive X-ray spectroscopy. The LaPO4 coating on Hi-Nicalon fibers was approximately stoichiometric and about 50 nm thick. The coating on the Sylramic fibers extended to a depth of about 100 to 150 nm. The coating may have been stoichiometric LaPO4 in the first 30 to 40 nm of the layer. However, the surface roughness of Sylramic fiber made this profile somewhat difficult to interpret. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction. Hi-Nicalon fiber consists of fine beta-SiC nanocrystals ranging in size from 1 to 30 mn embedded in an amorphous matrix. Sylramic is a polycrystalline stoichiometric silicon carbide fiber consisting of submicron beta-SiC crystallites ranging from 100 to 300 nm. Small amount of TiB2 nanocrystallites (approx. 50 nm) are also present. The LaPO4 coating on Hi-Nicalon fibers consisted of a chain of peanut shape particles having monazite-(La) structure. The coating on Sylramic fibers consisted of two layers. The inner layer was a chain of peanut shape particles having monazite-(La) structure. The outer layer was comprised of much smaller particles with a microcrystalline structure. Bansal, N. P. and Wheeler, D. R. and Chen, Y. L. Glenn Rese
Download or read book Environmental Effects on the Tensile Strength of Chemically Vapor Deposited Silicon Carbide Fibers written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-08-16 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength. Bhatt, R. T. and Kraitchman, M. D. Glenn Research Center NASA-TM-86981, E-2519, NAS 1.15:86981, USAAVSCOM-TR-85-C-4, AD-A157111 RTOP 533-05-12...
Download or read book Effect of Load Rate on Ultimate Tensile Strength of Ceramic Matrix Composites at Elevated Temperatures written by National Aeronautics and Space Adm Nasa and published by Independently Published. This book was released on 2018-09-26 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: The strengths of three continuous fiber-reinforced ceramic composites, including SiC/CAS-II, SiC/MAS-5 and SiC/SiC, were determined as a function of test rate in air at 1100 to 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for composite materials, at least for short range of lifetimes and when ultimate strength is used as the failure criterion. Choi, Sung R. and Gyekenyesi, John P. Glenn Research Center NASA/TM-2001-211125, NAS 1.15:211125, E-12975
Download or read book SiC Fiber Reinforced Celsian Composites written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-11 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: Celsian is a promising matrix material for fiber-reinforced composites for high temperature structural applications. Processing and fabrication of small diameter multifilament silicon carbide tow reinforced celsian matrix composites are described. Mechanical and microstructural properties of these composites at ambient and elevated temperatures are presented. Effects of high-temperature exposures in air on the mechanical behavior of these composites are also given. The composites show mechanical integrity up to 1100 C but degrade at higher temperatures in oxidizing atmospheres. A model has been proposed for the degradation of these composites in oxidizing atmospheres at high temperatures.Bansal, Narottam P.Glenn Research CenterFABRICATION; MICROSTRUCTURE; SILICON CARBIDES; MECHANICAL PROPERTIES; GLASS; MATRIX MATERIALS; CERAMICS; TEMPERATURE DEPENDENCE; SHEAR STRENGTH; TENSILE STRENGTH; STRESS-STRAIN DIAGRAMS; SCANNING ELECTRON MICROSCOPY; BORON NITRIDES; VAPOR DEPOSITION
Download or read book Creep and Rupture Strength of an Advanced CVD SiC Fiber written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-08-16 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the as-produced condition the room temperature strength (approx. 6 GPa) of Textron Specialty Materials' 50 microns CVD SiC fiber represents the highest value thus far obtained for commercially produced polycrystalline SiC fibers. To understand whether this strength can be maintained after composite processing conditions, high temperature studies were performed on the effects of time, stress, and environment on 1400 deg. C tensile creep strain and stress rupture on as-produced, chemically vapor deposited SiC fibers. Creep strain results were consistent, allowing an evaluation of time and stress effects. Test environment had no influence on creep strain but I hour annealing at 1600 deg. C in argon gas significantly reduced the total creep strain and increased the stress dependence. This is attributed to changes in the free carbon morphology and its distribution within the CVD SiC fiber. For the as-produced and annealed fibers, strength at 1400 deg. C was found to decrease from a fast fracture value of 2 GPa to a 100-hr rupture strength value of 0. 8 GPa. In addition a loss of fast fracture strength from 6 GPa is attributed to thermally induced changes in the outer carbon coating and microstructure. Scatter in rupture times made a definitive analysis of environmental and annealing effects on creep strength difficult. Goldsby, J. C. and Yun, H. M. and DiCarlo, J. A. Glenn Research Center NASA-TM-107368, NAS 1.15:107368, E-10536 RTOP 505-63-12...