EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Microstructure and Pore Fluids on the Acoustic Properties of Granular Sedimentary Materials

Download or read book Microstructure and Pore Fluids on the Acoustic Properties of Granular Sedimentary Materials written by William Francis Murphy (III.) and published by . This book was released on 1982 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effects of Microstructure and Pore Fluids on the Acoustic Properties of Granular Materials

Download or read book Effects of Microstructure and Pore Fluids on the Acoustic Properties of Granular Materials written by Amos Nur and published by . This book was released on 1983 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this paper is to explain the effects of granular microstructure and effective pressure on low frequency velocities in water saturated granular materials. Micromechanical models are developed for the dry frame moduli. Unambiguous predictions are stated explicity for Vp, Vs, and Vp/Vs as a function of grain characteristics, porosity, and effective pressure. The predictions of each step are systematically tested by laboratory measurements of Vp and Vs in glass beads and quartz sands. Signal velocities were measured by an ultrasonic pilse transmission technique at frequencies approx. 200 kHz. All measurements were obtained in vacuum dry (

Book Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization

Download or read book Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization written by Vimal Saxena and published by Elsevier. This book was released on 2018-04-28 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization combines in a single useful handbook the multidisciplinary domains of the petroleum industry, including the fundamental concepts of rock physics, acoustic logging, waveform processing, and geophysical application modeling through graphical examples derived from field data. It includes results from core studies, together with graphics that validate and support the modeling process, and explores all possible facets of acoustic applications in reservoir evaluation for hydrocarbon exploration, development, and drilling support. The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization serves as a technical guide and research reference for oil and gas professionals, scientists, and students in the multidisciplinary field of reservoir characterization through the use of petrosonics. It overviews the fundamentals of borehole acoustics and rock physics, with a focus on reservoir evaluation applications, explores current advancements through updated research, and identifies areas of future growth. Presents theory, application, and limitations of borehole acoustics and rock physics through field examples and case studies Features "Petrosonic Workflows" for various acoustic applications and evaluations, which can be easily adapted for practical reservoir modeling and interpretation Covers the potential advantages of acoustic-based techniques and summarizes key results for easy geophysical application

Book The Rock Physics Handbook

    Book Details:
  • Author : Gary Mavko
  • Publisher : Cambridge University Press
  • Release : 2009-04-30
  • ISBN : 113947832X
  • Pages : 525 pages

Download or read book The Rock Physics Handbook written by Gary Mavko and published by Cambridge University Press. This book was released on 2009-04-30 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Rock Physics Handbook addresses the relationships between geophysical observations and the underlying physical properties of rocks. It distills a vast quantity of background theory and laboratory results into a series of concise chapters that provide practical solutions to problems in geophysical data interpretation. This expanded second edition presents major new chapters on statistical rock physics and velocity-porosity-clay models for clastic sediments. Other new and expanded topics include anisotropic seismic signatures, borehole waves, models for fractured media, poroelastic models, and attenuation models. This new edition also provides an enhanced set of appendices with key empirical results, data tables, and an atlas of reservoir rock properties - extended to include carbonates, clays, gas hydrates, and heavy oils. Supported by a website hosting MATLAB® routines for implementing the various rock physics formulas, this book is a vital resource for advanced students and university faculty, as well as petroleum industry geophysicists and engineers.

Book Handbook of Elastic Properties of Solids  Liquids  and Gases  Four Volume Set

Download or read book Handbook of Elastic Properties of Solids Liquids and Gases Four Volume Set written by Moises Levy and published by Academic Press. This book was released on 2000-10-23 with total page 2513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sound waves propagate through galactic space, through two-dimensional solids, through biological systems, through normal and dense stars, and through everything that surrounds us; the earth, the sea, and the air. We use sound to locate objects, to identify objects, to understand processes going on in nature, to communicate, and to entertain. The elastic properties of materials determine the velocity of sound in them and tell us about their response to stresses something which is very important when we are trying to construct, manufacture, or create something with any material. The Handbook of Elastic Properties of Materials will provide these characteristics for almost everything whose elastic properties has ever been measured or deduced in a concise and approachable manner. Leading experts will explain the significance of the elastic properties as they relate to intrinsic microscopic behavior, to manufacturing, to construction, or to diagnosis. They will discuss the propagation of sound in newly discovered or created materials, and in common materials which are being investigated with a fresh outlook. The Handbook will provide the reader with the elastic properties of the common and mundane, the novel and unique, the immense and the microscopic, and the exhorbitantly dense and the ephemeral.. You will also find the measurement. And theoretical techniques that have been developed and invented in order to extract these properties from a reluctant nature and recalcitrant systems. Key Features * Solids, liquids and gases covered in one handbook * Articles by experts describing insights developed over long and Illustrious careers * Properties of esoteric substances, such as normal and dense stars, superfluid helium three, fullerness, two dimensional solids, extraterrestial substances, gems and planetary atmospheres * Properties of common materials such as food, wood used for musical instruments, paper, cement, and cork * Modern dynamic elastic properties measurement techniques

Book Acoustics of Porous Media

Download or read book Acoustics of Porous Media written by Thierry Bourbié and published by Editions TECHNIP. This book was released on 1987 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hydrogeophysics

    Book Details:
  • Author : Yorum Rubin
  • Publisher : Springer Science & Business Media
  • Release : 2006-05-06
  • ISBN : 1402031025
  • Pages : 518 pages

Download or read book Hydrogeophysics written by Yorum Rubin and published by Springer Science & Business Media. This book was released on 2006-05-06 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ground-breaking work is the first to cover the fundamentals of hydrogeophysics from both the hydrogeological and geophysical perspectives. Authored by leading experts and expert groups, the book starts out by explaining the fundamentals of hydrological characterization, with focus on hydrological data acquisition and measurement analysis as well as geostatistical approaches. The fundamentals of geophysical characterization are then at length, including the geophysical techniques that are often used for hydrogeological characterization. Unlike other books, the geophysical methods and petrophysical discussions presented here emphasize the theory, assumptions, approaches, and interpretations that are particularly important for hydrogeological applications. A series of hydrogeophysical case studies illustrate hydrogeophysical approaches for mapping hydrological units, estimation of hydrogeological parameters, and monitoring of hydrogeological processes. Finally, the book concludes with hydrogeophysical frontiers, i.e. on emerging technologies and stochastic hydrogeophysical inversion approaches.

Book Fundamentals of Rock Physics

    Book Details:
  • Author : Nikolai Bagdassarov
  • Publisher : Cambridge University Press
  • Release : 2021-12-09
  • ISBN : 1108390196
  • Pages : 566 pages

Download or read book Fundamentals of Rock Physics written by Nikolai Bagdassarov and published by Cambridge University Press. This book was released on 2021-12-09 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rock physics encompasses practically all aspects of solid and fluid state physics. This book provides a unified presentation of the underlying physical principles of rock physics, covering elements of mineral physics, petrology and rock mechanics. After a short introduction on rocks and minerals, the subsequent chapters cover rock density, porosity, stress and strain relationships, permeability, poroelasticity, acoustics, conductivity, polarizability, magnetism, thermal properties and natural radioactivity. Each chapter includes problem sets and focus boxes with in-depth explanations of the physical and mathematical aspects of underlying processes. The book is also supplemented by online MATLAB exercises to help students apply their knowledge to numerically solve rock physics problems. Covering laboratory and field-based measurement methods, as well as theoretical models, this textbook is ideal for upper-level undergraduate and graduate courses in rock physics. It will also make a useful reference for researchers and professional scientists working in geoscience and petroleum engineering.

Book Wave Fields in Real Media

Download or read book Wave Fields in Real Media written by José M. Carcione and published by Elsevier. This book was released on 2022-08-04 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant constitutive relations. The differential formulation can be written in terms of memory variables, and Biot theory is used to describe wave propagation in porous media. For each constitutive relation, a plane-wave analysis is performed to illustrate the physics of wave propagation. New topics are the S-wave amplification function, Fermat principle and its relation to Snell law, bounds and averages of seismic Q, seismic attenuation in partially molten rocks, and more. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics and material science - including many branches of acoustics of fluids and solids - may also find this text useful. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation Emphasizes geophysics, particularly seismic exploration for hydrocarbon reservoirs, which is essential for the exploration and production of oil

Book Numerical Simulation of Pore scale Heterogeneity and Its Effects on Elastic  Electrical and Transport Properties

Download or read book Numerical Simulation of Pore scale Heterogeneity and Its Effects on Elastic Electrical and Transport Properties written by Ratnanabha Sain and published by Stanford University. This book was released on 2010 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation describes numerical experiments quantifying the influence of pore-scale heterogeneities and their evolution on macroscopic elastic, electrical and transport properties of porous media. We design, implement and test a computational recipe to construct granular packs and consolidated microstructures replicating geological processes and to estimate the link between process-to-property trends. This computational recipe includes five constructors: a Granular Dynamics (GD) simulation, an Event Driven Molecular Dynamics (EDMD) simulation and three computational diagenetic schemes; and four property estimators based on GD for elastic, finite-elements (FE) for elastic and electrical conductivity, and Lattice-Boltzmann method (LBM) for flow property simulations. Our implementation of GD simulation is capable of constructing realistic, frictional, jammed sphere packs under isotropic and uniaxial stress states. The link between microstructural properties in these packs, like porosity and coordination number (average number of contacts per grain), and stress states (due to compaction) is non-unique and depends on assemblage process and inter-granular friction. Stable jammed packs having similar internal stress and coordination number (CN) can exist at a range of porosities (38-42%) based on how fast they are assembled or compressed. Similarly, lower inter-grain friction during assemblage creates packs with higher coordination number and lower porosity at the same stress. Further, the heterogeneities in coordination number, spatial arrangement of contacts, the contact forces and internal stresses evolve with compaction non-linearly. These pore-scale heterogeneities impact effective elastic moduli, calculated by using infinitesimal perturbation method. Simulated stress-strain relationships and pressure-dependent elastic moduli for random granular packs show excellent match with laboratory experiments, unlike theoretical models based on Effective Medium Theory (EMT). We elaborately discuss the reasons why Effective Medium Theory (EMT) fails to correctly predict pressure-dependent elastic moduli, stress-strain relationships and stress-ratios (in uniaxial compaction) of granular packs or unconsolidated sediments. We specifically show that the unrealistic assumption of homogeneity in disordered packs and subsequent use of continuum elasticity-based homogeneous strain theory creates non-physical packs, which is why EMT fails. In the absence of a rigorous theory which can quantitatively account for heterogeneity in random granular packs, we propose relaxation corrections to amend EMT elastic moduli predictions. These pressure-dependent and compaction-dependent (isotropic or uniaxial) correction factors are rigorously estimated using GD simulation without non-physical approximations. Further, these correction factors heuristically represent the pressure-dependent heterogeneity and are also applicable for amending predictions of theoretical cementation models, which are conventionally used for granular packs. For predicting stress-ratios in uniaxial compaction scenario, we show the inappropriateness of linear elasticity-based equations, which use elastic constants only and do not account for dissipative losses like grain sliding. We further implement and test a computational recipe to construct consolidated microstructures based on different geological scenarios, like sorting, compaction, cementation types and cement materials. Our diagenetic trends of elastic, electrical and transport properties show excellent match with laboratory experiments on core plugs. This shows the feasibility of implementing a full-scale computational-rock-physics-based laboratory to construct and estimate properties based on geological processes. However, the elastic property estimator (FE simulation) shows limitations of finite resolution while computing elastic properties of unconsolidated sediments and fluid-saturated microstructures.

Book Seismic Reflections of Rock Properties

Download or read book Seismic Reflections of Rock Properties written by Jack Dvorkin and published by Cambridge University Press. This book was released on 2014-03-13 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible guide to using the rock physics-based forward modeling approach for mapping the subsurface, systematically linking rock properties to seismic amplitude. Providing practical workflows, the book shows how to methodically vary lithology, porosity, rock type, and pore fluids and reservoir geometry, calculate the corresponding elastic properties, and then generate synthetic seismic traces. These synthetic traces can then be compared to actual seismic traces from the field: a similar actual seismic response implies similar rock properties in the subsurface. The book catalogs various cases, including clastic sediments, carbonates, and time-lapse seismic monitoring, and discusses the effect of attenuation on seismic reflections. It shows how to build earth models (pseudo-wells) using deterministic and statistical approaches, and includes case studies based on real well data. A vital guide for researchers and petroleum geologists, in industry and academia, providing sample catalogs of synthetic seismic reflections from a variety of realistic reservoir models.

Book Quantitative Seismic Interpretation

Download or read book Quantitative Seismic Interpretation written by Per Avseth and published by Cambridge University Press. This book was released on 2010-06-10 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative Seismic Interpretation demonstrates how rock physics can be applied to predict reservoir parameters, such as lithologies and pore fluids, from seismically derived attributes. The authors provide an integrated methodology and practical tools for quantitative interpretation, uncertainty assessment, and characterization of subsurface reservoirs using well-log and seismic data. They illustrate the advantages of these new methodologies, while providing advice about limitations of the methods and traditional pitfalls. This book is aimed at graduate students, academics and industry professionals working in the areas of petroleum geoscience and exploration seismology. It will also interest environmental geophysicists seeking a quantitative subsurface characterization from shallow seismic data. The book includes problem sets and a case-study, for which seismic and well-log data, and MATLAB® codes are provided on a website (http://www.cambridge.org/9780521151351). These resources will allow readers to gain a hands-on understanding of the methodologies.

Book A Report on Geophysics at Stanford

Download or read book A Report on Geophysics at Stanford written by Stanford University. Department of Geophysics and published by . This book was released on 1983 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Natural Gas Hydrate in Oceanic and Permafrost Environments

Download or read book Natural Gas Hydrate in Oceanic and Permafrost Environments written by M.D. Max and published by Springer Science & Business Media. This book was released on 2003-05-31 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book published on the emerging research field of naturally occurring gas hydrates (focusing on methane hydrate) that is not primarily a physical chemistry textbook. This book is designed as a broad introduction to the field of hydrate science, demonstrating the significance of the hydrate cycle to energy resource potential, seafloor stability, and global climate and climate change, along with other issues. The best known hydrate localities are described, as are research and laboratory methods and results. The book consists of chapters grouped in related themes that present up-to-date information on methane hydrate. Each of the contributing authors is expert in hydrate science and most have been carrying out research in hydrate for a considerable time. Audience: This book will be an important source of information for marine geologists, geophysicists, geochemists, and petroleum geologists and regulators. It is also intended as a graduate-level textbook.

Book Offset dependent Reflectivity

Download or read book Offset dependent Reflectivity written by John P. Castagna and published by SEG Books. This book was released on 1993 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recognizing the need for education and further research in AVO, the editors have compiled an all-encompassing treatment of this versatile technology. In addition to providing a general introduction to the subject and a review of the current state of the art, this unique volume provides useful reference materials and data plus original contributions at the leading edge of AVO technologies.