EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Microsoft Azure Essentials Azure Machine Learning

Download or read book Microsoft Azure Essentials Azure Machine Learning written by Jeff Barnes and published by Microsoft Press. This book was released on 2015-04-25 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the Microsoft Azure Essentials series.

Book Microsoft Azure Machine Learning

Download or read book Microsoft Azure Machine Learning written by Sumit Mund and published by Packt Publishing Ltd. This book was released on 2015-06-16 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides you with the skills necessary to get started with Azure Machine Learning to build predictive models as quickly as possible, in a very intuitive way, whether you are completely new to predictive analysis or an existing practitioner. The book starts by exploring ML Studio, the browser-based development environment, and explores the first step—data exploration and visualization. You will then build different predictive models using both supervised and unsupervised algorithms, including a simple recommender system. The focus then shifts to learning how to deploy a model to production and publishing it as an API. The book ends with a couple of case studies using all the concepts and skills you have learned throughout the book to solve real-world problems.

Book Predictive Analytics with Microsoft Azure Machine Learning

Download or read book Predictive Analytics with Microsoft Azure Machine Learning written by Valentine Fontama and published by Apress. This book was released on 2014-11-25 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Business Intelligence addresses descriptive and diagnostic analysis, Data Science unlocks new opportunities through predictive and prescriptive analysis. The purpose of this book is to provide a gentle and instructionally organized introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book also provides a thorough overview of the Microsoft Azure Machine Learning service using task oriented descriptions and concrete end-to-end examples, sufficient to ensure the reader can immediately begin using this important new service. It describes all aspects of the service from data ingress to applying machine learning and evaluating the resulting model, to deploying the resulting model as a machine learning web service. Finally, this book attempts to have minimal dependencies, so that you can fairly easily pick and choose chapters to read. When dependencies do exist, they are listed at the start and end of the chapter. The simplicity of this new service from Microsoft will help to take Data Science and Machine Learning to a much broader audience than existing products in this space. Learn how you can quickly build and deploy sophisticated predictive models as machine learning web services with the new Azure Machine Learning service from Microsoft.

Book Automated Machine Learning with Microsoft Azure

Download or read book Automated Machine Learning with Microsoft Azure written by Dennis Michael Sawyers and published by Packt Publishing Ltd. This book was released on 2021-04-23 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical, step-by-step guide to using Microsoft's AutoML technology on the Azure Machine Learning service for developers and data scientists working with the Python programming language Key FeaturesCreate, deploy, productionalize, and scale automated machine learning solutions on Microsoft AzureImprove the accuracy of your ML models through automatic data featurization and model trainingIncrease productivity in your organization by using artificial intelligence to solve common problemsBook Description Automated Machine Learning with Microsoft Azure will teach you how to build high-performing, accurate machine learning models in record time. It will equip you with the knowledge and skills to easily harness the power of artificial intelligence and increase the productivity and profitability of your business. Guided user interfaces (GUIs) enable both novices and seasoned data scientists to easily train and deploy machine learning solutions to production. Using a careful, step-by-step approach, this book will teach you how to use Azure AutoML with a GUI as well as the AzureML Python software development kit (SDK). First, you'll learn how to prepare data, train models, and register them to your Azure Machine Learning workspace. You'll then discover how to take those models and use them to create both automated batch solutions using machine learning pipelines and real-time scoring solutions using Azure Kubernetes Service (AKS). Finally, you will be able to use AutoML on your own data to not only train regression, classification, and forecasting models but also use them to solve a wide variety of business problems. By the end of this Azure book, you'll be able to show your business partners exactly how your ML models are making predictions through automatically generated charts and graphs, earning their trust and respect. What you will learnUnderstand how to train classification, regression, and forecasting ML algorithms with Azure AutoMLPrepare data for Azure AutoML to ensure smooth model training and deploymentAdjust AutoML configuration settings to make your models as accurate as possibleDetermine when to use a batch-scoring solution versus a real-time scoring solutionProductionalize your AutoML and discover how to quickly deliver valueCreate real-time scoring solutions with AutoML and Azure Kubernetes ServiceTrain a large number of AutoML models at once using the AzureML Python SDKWho this book is for Data scientists, aspiring data scientists, machine learning engineers, or anyone interested in applying artificial intelligence or machine learning in their business will find this machine learning book useful. You need to have beginner-level knowledge of artificial intelligence and a technical background in computer science, statistics, or information technology before getting started. Familiarity with Python will help you implement the more advanced features found in the chapters, but even data analysts and SQL experts will be able to train ML models after finishing this book.

Book Hands On Machine Learning with Azure

Download or read book Hands On Machine Learning with Azure written by Thomas K Abraham and published by Packt Publishing Ltd. This book was released on 2018-10-31 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement machine learning, cognitive services, and artificial intelligence solutions by leveraging Azure cloud technologies Key FeaturesLearn advanced concepts in Azure ML and the Cortana Intelligence Suite architectureExplore ML Server using SQL Server and HDInsight capabilitiesImplement various tools in Azure to build and deploy machine learning modelsBook Description Implementing Machine learning (ML) and Artificial Intelligence (AI) in the cloud had not been possible earlier due to the lack of processing power and storage. However, Azure has created ML and AI services that are easy to implement in the cloud. Hands-On Machine Learning with Azure teaches you how to perform advanced ML projects in the cloud in a cost-effective way. The book begins by covering the benefits of ML and AI in the cloud. You will then explore Microsoft’s Team Data Science Process to establish a repeatable process for successful AI development and implementation. You will also gain an understanding of AI technologies available in Azure and the Cognitive Services APIs to integrate them into bot applications. This book lets you explore prebuilt templates with Azure Machine Learning Studio and build a model using canned algorithms that can be deployed as web services. The book then takes you through a preconfigured series of virtual machines in Azure targeted at AI development scenarios. You will get to grips with the ML Server and its capabilities in SQL and HDInsight. In the concluding chapters, you’ll integrate patterns with other non-AI services in Azure. By the end of this book, you will be fully equipped to implement smart cognitive actions in your models. What you will learnDiscover the benefits of leveraging the cloud for ML and AIUse Cognitive Services APIs to build intelligent botsBuild a model using canned algorithms from Microsoft and deploy it as a web serviceDeploy virtual machines in AI development scenariosApply R, Python, SQL Server, and Spark in AzureBuild and deploy deep learning solutions with CNTK, MMLSpark, and TensorFlowImplement model retraining in IoT, Streaming, and Blockchain solutionsExplore best practices for integrating ML and AI functions with ADLA and logic appsWho this book is for If you are a data scientist or developer familiar with Azure ML and cognitive services and want to create smart models and make sense of data in the cloud, this book is for you. You’ll also find this book useful if you want to bring powerful machine learning services into your cloud applications. Some experience with data manipulation and processing, using languages like SQL, Python, and R, will aid in understanding the concepts covered in this book

Book Mastering Azure Machine Learning

Download or read book Mastering Azure Machine Learning written by Kaijisse Waaijer and published by . This book was released on 2020-04-30 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will help you learn how to build a scalable end-to-end machine learning pipeline in Azure from experimentation and training to optimization and deployment. By the end of this book, you will learn to build complex distributed systems and scalable cloud infrastructure using powerful machine learning algorithms to compute insights.

Book Machine Learning with Microsoft Technologies

Download or read book Machine Learning with Microsoft Technologies written by Leila Etaati and published by Apress. This book was released on 2019-06-12 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Know how to do machine learning with Microsoft technologies. This book teaches you to do predictive, descriptive, and prescriptive analyses with Microsoft Power BI, Azure Data Lake, SQL Server, Stream Analytics, Azure Databricks, HD Insight, and more. The ability to analyze massive amounts of real-time data and predict future behavior of an organization is critical to its long-term success. Data science, and more specifically machine learning (ML), is today’s game changer and should be a key building block in every company’s strategy. Managing a machine learning process from business understanding, data acquisition and cleaning, modeling, and deployment in each tool is a valuable skill set. Machine Learning with Microsoft Technologies is a demo-driven book that explains how to do machine learning with Microsoft technologies. You will gain valuable insight into designing the best architecture for development, sharing, and deploying a machine learning solution. This book simplifies the process of choosing the right architecture and tools for doing machine learning based on your specific infrastructure needs and requirements. Detailed content is provided on the main algorithms for supervised and unsupervised machine learning and examples show ML practices using both R and Python languages, the main languages inside Microsoft technologies. What You'll Learn Choose the right Microsoft product for your machine learning solutionCreate and manage Microsoft’s tool environments for development, testing, and production of a machine learning projectImplement and deploy supervised and unsupervised learning in Microsoft products Set up Microsoft Power BI, Azure Data Lake, SQL Server, Stream Analytics, Azure Databricks, and HD Insight to perform machine learning Set up a data science virtual machine and test-drive installed tools, such as Azure ML Workbench, Azure ML Server Developer, Anaconda Python, Jupyter Notebook, Power BI Desktop, Cognitive Services, machine learning and data analytics tools, and more Architect a machine learning solution factoring in all aspects of self service, enterprise, deployment, and sharing Who This Book Is For Data scientists, data analysts, developers, architects, and managers who want to leverage machine learning in their products, organization, and services, and make educated, cost-saving decisions about their ML architecture and tool set.

Book Interpretable Machine Learning

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Book Practical Automated Machine Learning on Azure

Download or read book Practical Automated Machine Learning on Azure written by Deepak Mukunthu and published by "O'Reilly Media, Inc.". This book was released on 2019-09-23 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develop smart applications without spending days and weeks building machine-learning models. With this practical book, you’ll learn how to apply automated machine learning (AutoML), a process that uses machine learning to help people build machine learning models. Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok provide a mix of technical depth, hands-on examples, and case studies that show how customers are solving real-world problems with this technology. Building machine-learning models is an iterative and time-consuming process. Even those who know how to create ML models may be limited in how much they can explore. Once you complete this book, you’ll understand how to apply AutoML to your data right away. Learn how companies in different industries are benefiting from AutoML Get started with AutoML using Azure Explore aspects such as algorithm selection, auto featurization, and hyperparameter tuning Understand how data analysts, BI professions, developers can use AutoML in their familiar tools and experiences Learn how to get started using AutoML for use cases including classification, regression, and forecasting.

Book Introducing Machine Learning

Download or read book Introducing Machine Learning written by Dino Esposito and published by Microsoft Press. This book was released on 2020-01-31 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. · 14-time Microsoft MVP Dino Esposito and Francesco Esposito help you · Explore what’s known about how humans learn and how intelligent software is built · Discover which problems machine learning can address · Understand the machine learning pipeline: the steps leading to a deliverable model · Use AutoML to automatically select the best pipeline for any problem and dataset · Master ML.NET, implement its pipeline, and apply its tasks and algorithms · Explore the mathematical foundations of machine learning · Make predictions, improve decision-making, and apply probabilistic methods · Group data via classification and clustering · Learn the fundamentals of deep learning, including neural network design · Leverage AI cloud services to build better real-world solutions faster About This Book · For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills · Includes examples of machine learning coding scenarios built using the ML.NET library

Book Deep Learning with Azure

Download or read book Deep Learning with Azure written by Mathew Salvaris and published by Apress. This book was released on 2018-08-24 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI? Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI. What You'll Learn Become familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AI Use pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more) Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolving Discover the options for training and operationalizing deep learning models on Azure Who This Book Is For Professional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful.

Book Microsoft Azure Essentials   Fundamentals of Azure

Download or read book Microsoft Azure Essentials Fundamentals of Azure written by Michael Collier and published by Microsoft Press. This book was released on 2015-01-29 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. The first ebook in the series, Microsoft Azure Essentials: Fundamentals of Azure, introduces developers and IT professionals to the wide range of capabilities in Azure. The authors - both Microsoft MVPs in Azure - present both conceptual and how-to content for key areas, including: Azure Websites and Azure Cloud Services Azure Virtual Machines Azure Storage Azure Virtual Networks Databases Azure Active Directory Management tools Business scenarios Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the “Microsoft Azure Essentials” series.

Book Azure Data Scientist Associate Certification Guide

Download or read book Azure Data Scientist Associate Certification Guide written by Andreas Botsikas and published by Packt Publishing Ltd. This book was released on 2021-12-03 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develop the skills you need to run machine learning workloads in Azure and pass the DP-100 exam with ease Key FeaturesCreate end-to-end machine learning training pipelines, with or without codeTrack experiment progress using the cloud-based MLflow-compatible process of Azure ML servicesOperationalize your machine learning models by creating batch and real-time endpointsBook Description The Azure Data Scientist Associate Certification Guide helps you acquire practical knowledge for machine learning experimentation on Azure. It covers everything you need to pass the DP-100 exam and become a certified Azure Data Scientist Associate. Starting with an introduction to data science, you'll learn the terminology that will be used throughout the book and then move on to the Azure Machine Learning (Azure ML) workspace. You'll discover the studio interface and manage various components, such as data stores and compute clusters. Next, the book focuses on no-code and low-code experimentation, and shows you how to use the Automated ML wizard to locate and deploy optimal models for your dataset. You'll also learn how to run end-to-end data science experiments using the designer provided in Azure ML Studio. You'll then explore the Azure ML Software Development Kit (SDK) for Python and advance to creating experiments and publishing models using code. The book also guides you in optimizing your model's hyperparameters using Hyperdrive before demonstrating how to use responsible AI tools to interpret and debug your models. Once you have a trained model, you'll learn to operationalize it for batch or real-time inferences and monitor it in production. By the end of this Azure certification study guide, you'll have gained the knowledge and the practical skills required to pass the DP-100 exam. What you will learnCreate a working environment for data science workloads on AzureRun data experiments using Azure Machine Learning servicesCreate training and inference pipelines using the designer or codeDiscover the best model for your dataset using Automated MLUse hyperparameter tuning to optimize trained modelsDeploy, use, and monitor models in productionInterpret the predictions of a trained modelWho this book is for This book is for developers who want to infuse their applications with AI capabilities and data scientists looking to scale their machine learning experiments in the Azure cloud. Basic knowledge of Python is needed to follow the code samples used in the book. Some experience in training machine learning models in Python using common frameworks like scikit-learn will help you understand the content more easily.

Book Exam Ref 70 774 Perform Cloud Data Science with Azure Machine Learning

Download or read book Exam Ref 70 774 Perform Cloud Data Science with Azure Machine Learning written by Ginger Grant and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Learn Azure in a Month of Lunches  Second Edition

Download or read book Learn Azure in a Month of Lunches Second Edition written by Iain Foulds and published by Manning. This book was released on 2020-10-06 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn Azure in a Month of Lunches, Second Edition, is a tutorial on writing, deploying, and running applications in Azure. In it, you’ll work through 21 short lessons that give you real-world experience. Each lesson includes a hands-on lab so you can try out and lock in your new skills. Summary You can be incredibly productive with Azure without mastering every feature, function, and service. Learn Azure in a Month of Lunches, Second Edition gets you up and running quickly, teaching you the most important concepts and tasks in 21 practical bite-sized lessons. As you explore the examples, exercises, and labs, you'll pick up valuable skills immediately and take your first steps to Azure mastery! This fully revised new edition covers core changes to the Azure UI, new Azure features, Azure containers, and the upgraded Azure Kubernetes Service. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Microsoft Azure is vast and powerful, offering virtual servers, application templates, and prebuilt services for everything from data storage to AI. To navigate it all, you need a trustworthy guide. In this book, Microsoft engineer and Azure trainer Iain Foulds focuses on core skills for creating cloud-based applications. About the book Learn Azure in a Month of Lunches, Second Edition, is a tutorial on writing, deploying, and running applications in Azure. In it, you’ll work through 21 short lessons that give you real-world experience. Each lesson includes a hands-on lab so you can try out and lock in your new skills. What's inside Understanding Azure beyond point-and-click Securing applications and data Automating your environment Azure services for machine learning, containers, and more About the reader This book is for readers who can write and deploy simple web or client/server applications. About the author Iain Foulds is an engineer and senior content developer with Microsoft. Table of Contents PART 1 - AZURE CORE SERVICES 1 Before you begin 2 Creating a virtual machine 3 Azure Web Apps 4 Introduction to Azure Storage 5 Azure Networking basics PART 2 - HIGH AVAILABILITY AND SCALE 6 Azure Resource Manager 7 High availability and redundancy 8 Load-balancing applications 9 Applications that scale 10 Global databases with Cosmos DB 11 Managing network traffic and routing 12 Monitoring and troubleshooting PART 3 - SECURE BY DEFAULT 13 Backup, recovery, and replication 14 Data encryption 15 Securing information with Azure Key Vault 16 Azure Security Center and updates PART 4 - THE COOL STUFF 17 Machine learning and artificial intelligence 18 Azure Automation 19 Azure containers 20 Azure and the Internet of Things 21 Serverless computing

Book Exam Ref AI 900 Microsoft Azure AI Fundamentals

Download or read book Exam Ref AI 900 Microsoft Azure AI Fundamentals written by Julian Sharp and published by Microsoft Press. This book was released on 2021-11-22 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Direct from Microsoft, this Exam Ref is the official study guide for the new Microsoft AI-900 Microsoft Azure AI Fundamentals certification exam. Exam Ref AI-900 Microsoft Azure AI Fundamentals offers professional-level preparation that helps candidates maximize their exam performance and sharpen their skills on the job. It focuses on the specific areas of expertise modern IT professionals need to demonstrate real-world mastery of common machine learning (ML) and artificial intelligence (AI) workloads and how to use them in Azure.

Book Data Engineering on Azure

Download or read book Data Engineering on Azure written by Vlad Riscutia and published by Simon and Schuster. This book was released on 2021-08-17 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data