EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Microorganisms as Model Systems for Studying Evolution

Download or read book Microorganisms as Model Systems for Studying Evolution written by Robert Mortlock and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: The microorganisms present on the earth today possess a vast range of metabolic activities and are often able to demonstrate their surprising versatility by gaining both new enzyme activities and new metabolic path ways through mutations. It is generally assumed that the earliest micro organisms were very limited in their metabolic abilities, but as time passed they gradually expanded their range of enzymatic activities and increased both their biosynthetic and catabolic capacity. It is also believed that these primitive microorganisms increased the amount of genetic material they possessed by duplicating their existing genes and possibly by ac quiring genetic material from other organisms. A small group of scientists has been exploring the means by which existing microorganisms are capable of mutating to expand their bio chemical abilities. In recent years, more attention has been focused on this type of research, sometimes called "evolution in a test tube." The recent advances in biotechnology and modern techniques of genetic trans fer have generated new interest in the methods by which a microorgan ism's metabolic activities can be improved or deliberately changed in some specific manner.

Book Microbial Evolution

    Book Details:
  • Author : Howard Ochman
  • Publisher :
  • Release : 2016
  • ISBN : 9781621820376
  • Pages : 0 pages

Download or read book Microbial Evolution written by Howard Ochman and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bacteria have been the dominant forms of life on Earth for the past 3.5 billion years. They rapidly evolve, constantly changing their genetic architecture through horizontal DNA transfer and other mechanisms. Consequently, it can be difficult to define individual species and determine how they are related. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines how bacteria and other microbes evolve, focusing on insights from genomics-based studies. Contributors discuss the origins of new microbial populations, the evolutionary and ecological mechanisms that keep species separate once they have diverged, and the challenges of constructing phylogenetic trees that accurately reflect their relationships. They describe the organization of microbial genomes, the various mutations that occur, including the birth of new genes de novo and by duplication, and how natural selection acts on those changes. The role of horizontal gene transfer as a strong driver of microbial evolution is emphasized throughout. The authors also explore the geologic evidence for early microbial evolution and describe the use of microbial evolution experiments to examine phenomena like natural selection. This volume will thus be essential reading for all microbial ecologists, population geneticists, and evolutionary biologists.

Book Microbial Evolution under Extreme Conditions

Download or read book Microbial Evolution under Extreme Conditions written by Corien Bakermans and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-03-10 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today's microorganisms represent the vast majority of biodiversity on Earth and have survived nearly 4 billion years of evolutionary change. However, we still know little about the processes of evolution as applied to microorganisms and microbial populations. Microbial evolution occurred and continues to take place in a vast variety of environmental conditions that range from anoxic to oxic, from hot to cold, from free-living to symbiotic, etc. Some of these physicochemical conditions are considered "extreme", particularly when inhabitants are limited to microorganisms. It is easy to imagine that microbial life in extreme environments is somehow more constrained and perhaps subjected to different evolutionary pressures. But what do we actually know about microbial evolution under extreme conditions and how can we apply that knowledge to other conditions? Appealingly, extreme environments with their relatively limited numbers of inhabitants can serve as good model systems for the study of evolutionary processes. A look at the microbial inhabitants of today's extreme environments provides a snapshot in time of evolution and adaptation to extreme conditions. These adaptations manifest at different levels from established communities and species to genome content and changes in specific genes that result in altered function or gene expression. But as a recent (2011) report from the American Academy of Microbiology observes: "A complex issue in the study of microbial evolution is unraveling the process of evolution from that of adaptation. In many cases, microbes have the capacity to adapt to various environmental changes by changing gene expression or community composition as opposed to having to evolve entirely new capabilities." We have learned much about how microbes are adapted to extreme conditions but relatively little is known about these adaptations evolved. How did the different processes of evolution such as mutation, immigration, horizontal (lateral) gene transfer, recombination, hybridization, genetic drift, fixation, positive and negative selection, and selective screens contribute to the evolution of these genes, genomes, microbial species, communities, and functions? What are typical rates of these processes? How prevalent are each of these processes under different conditions? This book explores the current state of knowledge about microbial evolution under extreme conditions and addresses the following questions: What is known about the processes of microbial evolution (mechanisms, rates, etc.) under extreme conditions? Can this knowledge be applied to other systems and what is the broader relevance? What remains unknown and requires future research? These questions will be addressed from several perspectives including different extreme environments, specific organisms, and specific evolutionary processes.

Book The Social Biology of Microbial Communities

Download or read book The Social Biology of Microbial Communities written by Institute of Medicine and published by National Academies Press. This book was released on 2013-01-10 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.

Book Microbial Evolution and Co Adaptation

Download or read book Microbial Evolution and Co Adaptation written by Institute of Medicine and published by National Academies Press. This book was released on 2009-05-10 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dr. Joshua Lederberg - scientist, Nobel laureate, visionary thinker, and friend of the Forum on Microbial Threats - died on February 2, 2008. It was in his honor that the Institute of Medicine's Forum on Microbial Threats convened a public workshop on May 20-21, 2008, to examine Dr. Lederberg's scientific and policy contributions to the marketplace of ideas in the life sciences, medicine, and public policy. The resulting workshop summary, Microbial Evolution and Co-Adaptation, demonstrates the extent to which conceptual and technological developments have, within a few short years, advanced our collective understanding of the microbiome, microbial genetics, microbial communities, and microbe-host-environment interactions.

Book Evolution of Translational Omics

Download or read book Evolution of Translational Omics written by Institute of Medicine and published by National Academies Press. This book was released on 2012-09-13 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.

Book Polyextremophiles

    Book Details:
  • Author : Joseph Seckbach
  • Publisher : Springer Science & Business Media
  • Release : 2013-05-13
  • ISBN : 940076488X
  • Pages : 626 pages

Download or read book Polyextremophiles written by Joseph Seckbach and published by Springer Science & Business Media. This book was released on 2013-05-13 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many Microorganisms and some macro-organisms can live under extreme conditions. For example, high and low temperature, acidic and alkaline conditions, high salt areas, high pressure, toxic compounds, high level of ionizing radiation, anoxia and absence of light, etc. Many organisms inhabit environments characterized by more than one form of stress (Polyextremophiles). Among them are those who live in hypersaline and alkaline, hot and acidic, cold/hot and high hydrostatic pressure, etc. Polyextremophiles found in desert regions have to copy with intense UV irradiation and desiccation, high as well as low temperatures, and low availability of water and nutrients. This book provides novel results of application to polyextremophiles research ranging from nanotechnology to synthetic biology to the origin of life and beyond.

Book Molecular Mechanisms of Microbial Evolution

Download or read book Molecular Mechanisms of Microbial Evolution written by Pabulo H. Rampelotto and published by Springer. This book was released on 2018-10-12 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most profound paradigms that have transformed our understanding about life over the last decades was the acknowledgement that microorganisms play a central role in shaping the past and present environments on Earth and the nature of all life forms. Each organism is the product of its history and all extant life traces back to common ancestors, which were microorganisms. Nowadays, microorganisms represent the vast majority of biodiversity on Earth and have survived nearly 4 billion years of evolutionary change. Microbial evolution occurred and continues to take place in a great variety of environmental conditions. However, we still know little about the processes of evolution as applied to microorganisms and microbial populations. In addition, the molecular mechanisms by which microorganisms communicate/interact with each other and with multicellular organisms remains poorly understood. Such patterns of microbe-host interaction are essential to understand the evolution of microbial symbiosis and pathogenesis.Recent advances in DNA sequencing, high-throughput technologies, and genetic manipulation systems have enabled studies that directly characterize the molecular and genomic bases of evolution, producing data that are making us change our view of the microbial world. The notion that mutations in the coding regions of genomes are, in combination with selective forces, the main contributors to biodiversity needs to be re-examined as evidence accumulates, indicating that many non-coding regions that contain regulatory signals show a high rate of variation even among closely related organisms. Comparative analyses of an increasing number of closely related microbial genomes have yielded exciting insight into the sources of microbial genome variability with respect to gene content, gene order and evolution of genes with unknown functions. Furthermore, laboratory studies (i.e. experimental microbial evolution) are providing fundamental biological insight through direct observation of the evolution process. They not only enable testing evolutionary theory and principles, but also have applications to metabolic engineering and human health. Overall, these studies ranging from viruses to Bacteria to microbial Eukaryotes are illuminating the mechanisms of evolution at a resolution that Darwin, Delbruck and Dobzhansky could barely have imagined. Consequently, it is timely to review and highlight the progress so far as well as discuss what remains unknown and requires future research. This book explores the current state of knowledge on the molecular mechanisms of microbial evolution with a collection of papers written by authors who are leading experts in the field.

Book The Human Microbiome  Diet  and Health

Download or read book The Human Microbiome Diet and Health written by Food Forum and published by National Academies Press. This book was released on 2013-02-27 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Food Forum convened a public workshop on February 22-23, 2012, to explore current and emerging knowledge of the human microbiome, its role in human health, its interaction with the diet, and the translation of new research findings into tools and products that improve the nutritional quality of the food supply. The Human Microbiome, Diet, and Health: Workshop Summary summarizes the presentations and discussions that took place during the workshop. Over the two day workshop, several themes covered included: The microbiome is integral to human physiology, health, and disease. The microbiome is arguably the most intimate connection that humans have with their external environment, mostly through diet. Given the emerging nature of research on the microbiome, some important methodology issues might still have to be resolved with respect to undersampling and a lack of causal and mechanistic studies. Dietary interventions intended to have an impact on host biology via their impact on the microbiome are being developed, and the market for these products is seeing tremendous success. However, the current regulatory framework poses challenges to industry interest and investment.

Book Systems Microbiology

Download or read book Systems Microbiology written by Brian Douglas Robertson and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains cutting-edge reviews by world-leading experts on the systems biology of microorganisms. As well as covering theoretical approaches and mathematical modelling this book includes case studies on single microbial species of bacteria and archaea, and explores the systems analysis of microbial phenomena such as chemotaxis and phagocytosis. Topics covered include mathematical models for systems biology, systems biology of Escherichia coli metabolism, bacterial chemotaxis, systems biology of infection, host-microbe interactions, phagocytosis, system-level study of metabolism in M.

Book Variation and Evolution in Plants and Microorganisms

Download or read book Variation and Evolution in Plants and Microorganisms written by National Academy of Sciences and published by National Academies Press. This book was released on 2000-10-11 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The present book is intended as a progress report on [the] synthetic approach to evolution as it applies to the plant kingdom." With this simple statement, G. Ledyard Stebbins formulated the objectives of Variation and Evolution in Plants, published in 1950, setting forth for plants what became known as the "synthetic theory of evolution" or "the modern synthesis." The pervading conceit of the book was the molding of Darwin's evolution by natural selection within the framework of rapidly advancing genetic knowledge. At the time, Variation and Evolution in Plants significantly extended the scope of the science of plants. Plants, with their unique genetic, physiological, and evolutionary features, had all but been left completely out of the synthesis until that point. Fifty years later, the National Academy of Sciences convened a colloquium to update the advances made by Stebbins. This collection of 17 papers marks the 50th anniversary of the publication of Stebbins' classic. Organized into five sections, the book covers: early evolution and the origin of cells, virus and bacterial models, protoctist models, population variation, and trends and patterns in plant evolution.

Book Extremophiles as Astrobiological Models

Download or read book Extremophiles as Astrobiological Models written by Joseph Seckbach and published by John Wiley & Sons. This book was released on 2021-01-13 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The data in this book are new or updated, and will serve also as Origin of Life and evolutionary studies. Endospores of bacteria have a long history of use as model organisms in astrobiology, including survival in extreme environments and interplanetary transfer of life. Numerous other bacteria as well as archaea, lichens, fungi, algae and tiny animals (tardigrades, or water bears) are now being investigated for their tolerance to extreme conditions in simulated or real space environments. Experimental results from exposure studies on the International Space Station and space probes for up to 1.5 years are presented and discussed. Suggestions for extaterrestrial energy sources are also indicated. Audience Researchers and graduate students in microbiology, biochemistry, molecular biology and astrobiology, as well as anyone interested in the search for extraterrestrial life and its technical preparations.

Book Concepts of Biology

    Book Details:
  • Author : Samantha Fowler
  • Publisher :
  • Release : 2023-05-12
  • ISBN : 9781739015503
  • Pages : 0 pages

Download or read book Concepts of Biology written by Samantha Fowler and published by . This book was released on 2023-05-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.

Book The Hologenome Concept  Human  Animal and Plant Microbiota

Download or read book The Hologenome Concept Human Animal and Plant Microbiota written by Eugene Rosenberg and published by Springer Science & Business Media. This book was released on 2014-01-31 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Groundbreaking research over the last 10 years has given rise to the hologenome concept of evolution. This concept posits that the holobiont (host plus all of its associated microorganisms) and its hologenome (sum of the genetic information of the host and its symbiotic microorganisms), acting in concert, function as a unique biological entity and therefore as a level of selection in evolution. All animals and plants harbor abundant and diverse microbiota, including viruses. Often the amount of symbiotic microorganisms and their combined genetic information far exceed that of their host. The microbiota with its microbiome, together with the host genome, can be transmitted from one generation to the next and thus propagate the unique properties of the holobiont. The microbial symbionts and the host interact in a cooperative way that affects the health of the holobiont within its environment. Beneficial microbiota protects against pathogens, provides essential nutrients, catabolizes complex polysaccharides, renders harmful chemicals inert, and contributes to the performance of the immune system. In humans and animals, the microbiota also plays a role in behavior. The sum of these cooperative interactions characterizes the holobiont as a unique biological entity. Genetic variation in the hologenome can be brought about by changes in either the host genome or the microbial population genomes (microbiome). Evolution by cooperation can occur by amplifying existing microbes, gaining novel microbiota and by acquiring microbial and viral genes. Under environmental stress, the microbiome can change more rapidly and in response to more processes than the host organism alone and thus influences the evolution of the holobiont. Prebiotics, probiotics, synbiotics and phage therapy are discussed as applied aspects of the hologenome concept.

Book Serpentine

    Book Details:
  • Author : Susan Harrison
  • Publisher : Univ of California Press
  • Release : 2011-02-02
  • ISBN : 0520948459
  • Pages : 461 pages

Download or read book Serpentine written by Susan Harrison and published by Univ of California Press. This book was released on 2011-02-02 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Serpentine soils have long fascinated biologists for the specialized floras they support and the challenges they pose to plant survival and growth. This volume focuses on what scientists have learned about major questions in earth history, evolution, ecology, conservation, and restoration from the study of serpentine areas, especially in California. Results from molecular studies offer insight into evolutionary patterns, while new ecological research examines both species and communities. Serpentine highlights research whose breadth provides context and fresh insights into the evolution and ecology of stressful environments.

Book Diversity of the Microbial World

    Book Details:
  • Author : Angélica Cibrián-Jaramillo
  • Publisher : Frontiers Media SA
  • Release : 2020-07-17
  • ISBN : 2889636658
  • Pages : 86 pages

Download or read book Diversity of the Microbial World written by Angélica Cibrián-Jaramillo and published by Frontiers Media SA. This book was released on 2020-07-17 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microbes, or microorganisms, are tiny living beings that cannot be seen by the naked eye. These little guys are one of the oldest living things on Earth, and are extremely diverse in how they live and what they can do. They, for example, can live in many places, from the freezing iciness of glaciers, to the insides of other organisms, like termites or humans. Since they are virtually everywhere, microorganisms are essential for the biological processes that allow plants and animals to breath, eat and thrive. But how were they able to endure, adapt and flourish constantly over millions of years? The secrets of their success are still within them, coded into their genomes, waiting for us to understand them. Now, genomes, bacterial or otherwise, are the repositories of life. These repositories store almost every bit of information that allows living beings to live in discrete units called genes. Genes are strung together like the sentences in a book, interacting with each other to create meaning, saving the story of that particular book—or that particular living organism’s genome—so it can be copied, modified, corrected or enhanced, and then passed on to new generations. After many, many years of studying these “books,” we have learned to read and understand them, thanks to the technological innovations of the last decade. Nowadays, it is possible to get the full genomic sequence of practically any organism, and compare it with thousands of genomes from other organisms, letting us peek at the secrets that make each organism who it is. With the current technical abilities, the challenge now is not to obtain the information but to interpret all those chunks of the story. Finding ways to untangle the riddles of genomic information is the work of Genomics, the science that allows us to obtain, analyze and prioritize information among the many stories that we sequence everyday. To do this, Genomics draws from many sciences, like mathematics and computing sciences, making it a truly interdisciplinary endeavor. Right now , genomics are one of the most important areas of biology, and many, if not most, of current biological studies use at least a little bit of genomics. For example, genomics can be used to identify a microbe and give it a name, to learn about what types of things it can do or places it can live, and to figure out the mechanisms that enable it to survive under particular conditions. Here, we will dwell on some of the basic questions about microbial adaptation, biodiversity, and their relationships with other living beings using a genomic approach. We will also focus on the environment, trying to understand how such tiny little creatures are capable of solving their daily problems, and how they can alter the places in which they live. Learning about these mechanisms will not only provide us with knowledge about life in general but will also help us to understand these organisms as a fundamental component of our ecosystem, including their harmful and beneficial effects in all aspects of our daily life, which can be translated into useful applications in almost any imaginable way.

Book New Approaches for the Generation and Analysis of Microbial Typing Data

Download or read book New Approaches for the Generation and Analysis of Microbial Typing Data written by L. Dijkshoorn and published by Elsevier. This book was released on 2001-07-10 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rapid molecular identification and typing of micro-organisms is extremely important in efforts to monitor the geographical spread of virulent, epidemic or antibiotic-resistant pathogens. It has become a mainstay of integrated hospital infection control service. In addition, numerous industrial and biotechnological applications require the study of the diversity of organisms. Conventional phenotypic identification and typing methods have long been the mainstay of microbial population and epidemiological studies, but such methods often lack adequate discrimination and their use is normally confined to the group of organisms for which they were originally devised. Molecular fingerprinting methods have flourished in recent years and many of these new methods can be applied to numerous different organisms for a variety of purposes. Standardisation of these methods is vitally important. In addition, the generation of large numbers of complex fingerprint profiles requires that a computer-assisted strategy is used for the formation and analysis of databases. The purpose of this book is to describe the best fingerprinting methods that are currently available and the computer-assisted strategies that can be used for analysis and exchange of data between laboratories. This book is dedicated to the memory of Jan Ursing (1926 - 2000), Swedish microbiologist, taxonomist and philosopher. "...taxonomy is on the borders of philosophy because we do not know the natural continuities and discontinuities..."