EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Micromechanics Modelling of Ductile Fracture

Download or read book Micromechanics Modelling of Ductile Fracture written by Zengtao Chen and published by Springer Science & Business Media. This book was released on 2013-04-02 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes research advances in micromechanics modeling of ductile fractures made in the past two decades. The ultimate goal of this book is to reach manufacturing frontline designers and materials engineers by providing a user-oriented, theoretical background of micromechanics modeling. Accordingly, the book is organized in a unique way, first presenting a vigorous damage percolation model developed by the authors over the last ten years. This model overcomes almost all difficulties of the existing models and can be used to completely accommodate ductile damage developments within a single-measure microstructure frame. Related void damage criteria including nucleation, growth and coalescence are then discussed in detail: how they are improved, when and where they are used in the model, and how the model performs in comparison with the existing models. Sample forming simulations are provided to illustrate the model’s performance.

Book Crystal Plasticity Finite Element Methods

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Book Ductile Fracture in Metal Forming

Download or read book Ductile Fracture in Metal Forming written by Kazutake Komori and published by Academic Press. This book was released on 2019-10-11 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ductile Fracture in Metal Forming: Modeling and Simulation examines the current understanding of the mechanics and physics of ductile fracture in metal forming processes while also providing an approach to micromechanical ductile fracture prediction that can be applied to all metal forming processes. Starting with an overview of different ductile fracture scenarios, the book then goes on to explain modeling techniques that predict a range of mechanical phenomena that can lead to ductile fracture. The challenges in creating micromechanical models are addressed alongside methods of applying these models to several common metal forming processes. This book is suitable for researchers working in mechanics of materials, metal forming, mechanical metallurgy, and plasticity. Engineers in R&D industries involved in metal forming such as manufacturing, aerospace, and automation will also find the book very useful. - Explains innovative micromechanical modeling techniques for a variety of material behaviors - Examines how these models can be applied to metal forming processes in practice, including blanking, arrowed cracks in drawing, and surface cracks in upset forging - Provides a thorough examination of both macroscopic and microscopic ductile fracture theory

Book Introduction to Texture Analysis

Download or read book Introduction to Texture Analysis written by Olaf Engler and published by CRC Press. This book was released on 2009-11-16 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping broke new ground by collating seventy years worth of research in a convenient single-source format. Reflecting emerging methods and the evolution of the field, the second edition continues to provide comprehensive coverage of the concepts, pra

Book Damage Mechanics and Micromechanics of Localized Fracture Phenomena in Inelastic Solids

Download or read book Damage Mechanics and Micromechanics of Localized Fracture Phenomena in Inelastic Solids written by George Z Voyiadjis and published by Springer Science & Business Media. This book was released on 2012-01-29 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book resulted from a series of lecture notes presented in CISM, Udine in July 7 -11, 2008. The papers inform about recent advances in continuum damage mechanics for both metals and metal matrix composites as well as the micromechanics of localization in inelastic solids. Also many of the different constitutive damage models that have recently appeared in the literature and the different approaches to this topic are presented, making them easily accessible to researchers and graduate students in civil engineering, mechanical engineering, engineering mechanics, aerospace engineering, and material science.

Book Localization and Fracture Phenomena in Inelastic Solids

Download or read book Localization and Fracture Phenomena in Inelastic Solids written by Piotr Perzyna and published by Springer. This book was released on 2014-05-04 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains the discussion of some important aspects of localization and fracture phenomena in inelastic solids (single crystals, polycrystalline solids and geological materials). Physical and experimental foundations of crystal plasticity are given. Constitutive modelling of dissipative solids for description of localization and fracture is presented. Various regularization methods for solution of the initial-boundary value problems are outlined. Numerical solutions based on finite element method of practicular evolution problems with localization of plastic deformation are considered.

Book Strain Localization in Ductile Single Crystals

Download or read book Strain Localization in Ductile Single Crystals written by Robert J. Asaro and published by . This book was released on 1977 with total page 61 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Cyclic Plasticity of Engineering Materials

Download or read book Cyclic Plasticity of Engineering Materials written by Guozheng Kang and published by John Wiley & Sons. This book was released on 2017-05-01 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: New contributions to the cyclic plasticity of engineering materials Written by leading experts in the field, this book provides an authoritative and comprehensive introduction to cyclic plasticity of metals, polymers, composites and shape memory alloys. Each chapter is devoted to fundamentals of cyclic plasticity or to one of the major classes of materials, thereby providing a wide coverage of the field. The book deals with experimental observations on metals, composites, polymers and shape memory alloys, and the corresponding cyclic plasticity models for metals, polymers, particle reinforced metal matrix composites and shape memory alloys. Also, the thermo-mechanical coupled cyclic plasticity models are discussed for metals and shape memory alloys. Key features: Provides a comprehensive introduction to cyclic plasticity Presents Macroscopic and microscopic observations on the ratchetting of different materials Establishes cyclic plasticity constitutive models for different materials. Analysis of cyclic plasticity in engineering structures. This book is an important reference for students, practicing engineers and researchers who study cyclic plasticity in the areas of mechanical, civil, nuclear, and aerospace engineering as well as materials science.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2005 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book American Doctoral Dissertations

Download or read book American Doctoral Dissertations written by and published by . This book was released on 1996 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanism based Constitutive Modeling of L12 Single crystal Plasticity

Download or read book Mechanism based Constitutive Modeling of L12 Single crystal Plasticity written by Yuan Yin and published by . This book was released on 2006 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ni3Al, an L12 structure intermetallic crystal, is the basic composition of the [gamma]' precipitates in nickel-based superalloys and is a major strengthening mechanism contributing to the superalloys' outstanding high-temperature mechanical properties. Many L12-structure crystals present unusual macroscopic mechanical properties, including the anomalous temperature-dependence of yield strength and strain hardening rate. To date, extensive research has been carried out to reveal the underlying mechanisms. However, none of the resulting models has satisfactorily quantified the macroscopic behavior based on microscopic phenomena. Mechanism-based constitutive modeling and simulation provide an effective method in this respect, assisting in the understanding and development of current existing models, and potentially providing a convenient path for engineering applications. In light of recent theoretical developments and experimental evidence, a single-crystal continuum plasticity model for the L12-structure compound Ni3A1 is developed.

Book IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials

Download or read book IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials written by André Pineau and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: The IUT AM Symposium on "Micromechanics of Plasticity and Damage of Multiphase Materials" was held in Sevres, Paris, France, 29 August - 1 September 1995. The Symposium was attended by 83 persons from 18 countries. In addition 17 young French students attended the meeting. During the 4 day meeting, a total of 55 papers were presented, including 24 papers in the poster sessions. The meeting was divided into 7 oral and 3 poster sessions. The 7 oral sessions were the following: - Plasticity and Viscoplasticity I and II; - Phase transformations; - Damage I and II; - Statistical and geometrical aspects; - Cracks and interfaces. Each poster session was introduced by a Rapporteur, as follows: - Session I (Plasticity and Viscoplasticity): G. Cailletaud; - Session 2 (Damage): D. Franc;:ois; - Session 3 (Phase transformation; statistical and geometrical aspects): D. Jeulin. The main purpose of the Symposium was the discussion of the state of the art in the development of micromechanical models used to predict the macroscopic mechanical behaviour of mUltiphase solid materials. These materials consist of at least two chemically different phases, present either initially or formed during plastic deformation, when a strain-induced phase transformation takes place. One session was devoted to the latter case. Continuously strengthened composite materials, containing long fibers, were out of the scope of the Symposium.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Micromanufacturing of Metallic Materials

Download or read book Micromanufacturing of Metallic Materials written by Jingwei Zhao and published by MDPI. This book was released on 2021-01-13 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Product miniaturization is a trend for facilitating product usage, enabling product functions to be implemented in microscale geometries, and aimed at reducing product weight, volume, cost and pollution. Driven by ongoing miniaturization in diverse areas, including medical devices, precision equipment, communication devices, micro-electromechanical systems and microsystems technology, the demands for micro metallic products have been tremendously increased. Such a trend requires the development of advanced technology for the micromanufacturing of metallic materials, with regard to producing high-quality micro metallic products that possess excellent dimensional tolerances, the required mechanical properties and improved surface quality. Micromanufacturing differs from conventional manufacturing technology in terms of materials, processes, tools, and machines and equipment, due to the miniaturization nature of the whole micromanufacturing system, which challenges the rapid development of micromanufacturing technology. Such a background has prompted and encouraged us to publish a scholarly book on the topic of the micromanufacturing of metallic materials, with the purpose of providing readers with a valuable document that can be used in the research and development of micromanufacturing technology. This book will be useful for both theoretical and applied research aimed at micromanufacturing technology, and will serve as an important research tool, providing knowledge to be returned to the community not only as valuable scientific literature, but also as technology, processes and productivities.

Book Ductile Fracture After Complex Loading Histories

Download or read book Ductile Fracture After Complex Loading Histories written by Stephane Jean Marie Marcadet and published by . This book was released on 2015 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: In engineering practice, sheet metal often fails after complex strain paths that deviate substantially from the widely studied proportional loading paths. Different from previous works on the ductile fracture of sheet metal, this thesis research addresses the experimental and modeling issues related to the crack initiation in advanced high strength steels after loading direction reversal. The main outcome of the present work is a fracture initiation model for proportional and non-proportional loading. The starting point of this thesis is a first chapter on the development of a micromechanically-motivated ductile fracture initiation model for metals for proportional loading. Its formulation is based on the assumption that the onset of fracture is imminent with the formation of a primary or secondary band of localization. Motivated by the results from a thorough unit cell analysis, it is assumed that fracture initiates after proportional loading if the linear combination of the Hosford equivalent stress and the normal stress acting on the plane of maximum shear reaches a critical value. A comprehensive fracture initiation model is then obtained after transforming the localization criterion from the stress space to the space of equivalent plastic strain, stress triaxiality and Lode angle parameter using the material's isotropic hardening law. Experimental results are presented for three different advanced high strength steels. For each material, the onset of fracture is characterized for five distinct stress states, including butterfly shear, notched tension, tension with a central hole, and punch experiments. The comparison of model predictions with the experimental results demonstrates that the proposed Hosford-Coulomb model can predict with satisfactory accuracy the instant of ductile fracture initiation in advanced high strength steels. In a subsequent chapter, experimental methods are developed to perform compression tension experiments. In addition, a finite strain constitutive model is proposed combining a Swift-Voce isotropic hardening law with two Frederick-Armstrong kinematic hardening rules and a Yoshida-Uemori type of hardening stagnation approach. The plasticity model parameters are identified from uniaxial tension-compression stress-strain curve measurements and finite element simulations of compression-tension experiments on notched specimens. The model predictions are validated through comparison with experimentally-measured load-displacement curves up to the onset of fracture, local surface strain measurements and longitudinal thickness profiles. The extracted loading paths to fracture show a significant increase in ductility as a function of the compressive pre-strain. The Hosford-Coulomb model is therefore integrated into a non-linear damage indicator modeling framework to provide a phenomenological description of the experimental results for monotonic and reverse loading. Another extension of the modeling framework is presented in a third chapter inspired by the results from loss of ellipticity analysis. It is demonstrated that the Hosford-Coulomb model can also be expressed in terms of a stress-state dependent critical hardening rate. Moreover, it is shown that the critical hardening rate approach provides accurate predictions of the instant of fracture initiation for both proportional and non-proportional loading conditions. Enhancements of the finite strain constitutive model are also proposed to enable a fast identification of all model parameters. The plasticity model parameters are identified from stress-strain curve measurements from shear loading reversal on specimens with a uniform thickness reduced gage section. The model is used to estimate the local strain and stress fields in fracture experiments after shear reversal. The extracted loading paths to fracture show a significant increase in ductility as a function of the strain at shear reversal, a feature that is readily predicted by the prosed critical hardening rate model.