EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Microfluidics for Quantitative Analysis of Cellular and Intercellular Interactions

Download or read book Microfluidics for Quantitative Analysis of Cellular and Intercellular Interactions written by Timothy Kwa and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of microfluidics has grown steadily over the last decade and a half, due in part to the large variety of applications for manipulating fluids in nanoliter volumes. Specifically for biomedical engineering, microfluidics has been employed for creating small, well-controlled microenvironments for reliable analysis of small populations of cells. Thus, a thoughtfully designed microfluidic device can be extremely powerful toward assaying various cell functions, including the analysis of the cellular secretome. The focus of this thesis involves creating precisely engineered microfluidic devices to analyze small cell populations contained within carefully considered geometries. By integrating biosensors (electrochemical and optical) with these cellular microenvironments, we can achieve near real-time quantitative analysis of cell-secreted products in response to external stimuli. Combined with computational modeling techniques, we can calculate secretion rates for these products. Moreover, these microenvironments can also serve protective functions and toggle cellular communication, yielding novel information and insights into cellular responses. Through series of experiments such as these, we can develop novel methods for addressing and manipulating cell performance, especially in the context of disease or cellular dysfunction. My work involved microfluidic device design, prototyping, fabrication, and testing to obtain meaningful, quantitative results based on cellular function. Chapter 2 describes a microfluidic device capable of detecting two pro-inflammatory cytokines from cells. In Chapter 3, a reconfigurable microfluidic device was designed to protect cells while regenerating a sensor surface. Chapter 4 describes a microfluidic co-culture of liver cells, monitoring the paracrine interactions between hepatocytes and stellate cells. Chapter 5 reports on the detection of cell-secreted cytokines, analyzed in a reconfigurable device facilitating intercellular communication. In chapter 6, a microfluidic device with integrated valves was designed to assay cellular response to a predictably evolving chemical gradient. These devices with their disparate applications have produced a variety of interesting results pertaining to cellular function and intercellular communication. To this end, future work may be useful for shedding insights into disease pathogenesis and treatment, especially in terms of quantifying dose-dependent responses.

Book Microfluidics in Cell Biology Part C  Microfluidics for Cellular and Subcellular Analysis

Download or read book Microfluidics in Cell Biology Part C Microfluidics for Cellular and Subcellular Analysis written by and published by Academic Press. This book was released on 2018-11-22 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics in Cell Biology Part C, Volume 148, a new release in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Unique to this updated volume are three sections on microfluidics in various multi-cellular models, including microfluidics in cell monolayers/spheroids, microfluidics in organ on chips, and microfluidics in model organisms. Specific chapters discuss collective migration in microtubes, leukocyte adhesion dynamics on endothelial monolayers under flow, constrained spheroid for perfusion culture, cells in droplet arrays, heart on chips, kidney on chips, liver on chips, and more. - Contains contributions from experts in the field from across the world - Covers a wide array of topics on both mitosis and meiosis - Includes relevant, analysis based topics

Book Microfluidics in Cell Biology  Part A  Microfluidics for Multicellular Systems

Download or read book Microfluidics in Cell Biology Part A Microfluidics for Multicellular Systems written by and published by Academic Press. This book was released on 2018-07-20 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics in Cell Biology Part A: Volume 146, the latest release in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Unique to this updated volume are sections on Cell monolayers/spheroids, Collective migration in microtubes, Leukocyte adhesion dynamics on endothelial monolayers under flow, Constrained spheroid for perfusion culture, Cells in droplet arrays, Heart on chips, Kidney on chips, Liver on chips and hepatic immune responses, Gut on chips, 3D microvascular model-based lymphoma model, Blood brain barrier on chips, Multi-organ-on-a-chip for pharmacokinetic analysis, Cancer immunotherapy on chips, and more. - Contains contributions from experts in the field from across the globe - Covers a wide array of topics on both mitosis and meiosis - Includes relevant, analysis based topics

Book Microfluidics in Cell Biology Part B  Microfluidics in Single Cells

Download or read book Microfluidics in Cell Biology Part B Microfluidics in Single Cells written by and published by Academic Press. This book was released on 2018-08-27 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics in Cell Biology Part B: Microfluidics in Single Cells, Volume 147, a new volume in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Unique to this updated volume are three sections on microfluidics in various single cell models, including microfludics in micro-organisms, microfluidics for cell culture and cell sorting of mammalian cells, and microfluidics for cell migration. Specific sections in this latest release include Temperature control and drug delivery for cell division cycle control in fission yeast H2O2 stress response in budding yeast, Antibiotic resistance in bacteria, Metabolism in bacteria, Fluidized beds for bacterial sorting and amplification, Microfluidics for cell culture and cell sorting of mammalian cells, Hydrogel microwells, Immune cells migration in complex environments, Neutrophiles migration in health and disease, Cell guidance by physical cues, Stable gradients in gels of extracellular matrix for cancer cell migration, and more. Contains contributions from experts in the field from across the world Covers a wide array of topics on both mitosis and meiosis Includes relevant, analysis based topics

Book Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber Physical Microfluidic Platforms

Download or read book Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber Physical Microfluidic Platforms written by Mohamed Ibrahim and published by CRC Press. This book was released on 2020-05-31 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: A microfluidic biochip is an engineered fluidic device that controls the flow of analytes, thereby enabling a variety of useful applications. According to recent studies, the fields that are best set to benefit from the microfluidics technology, also known as lab-on-chip technology, include forensic identification, clinical chemistry, point-of-care (PoC) diagnostics, and drug discovery. The growth in such fields has significantly amplified the impact of microfluidics technology, whose market value is forecast to grow from $4 billion in 2017 to $13.2 billion by 2023. The rapid evolution of lab-on-chip technologies opens up opportunities for new biological or chemical science areas that can be directly facilitated by sensor-based microfluidics control. For example, the digital microfluidics-based ePlex system from GenMarkDx enables automated disease diagnosis and can bring syndromic testing near patients everywhere. However, as the applications of molecular biology grow, the adoption of microfluidics in many applications has not grown at the same pace, despite the concerted effort of microfluidic systems engineers. Recent studies suggest that state-of-the-art design techniques for microfluidics have two major drawbacks that need to be addressed appropriately: (1) current lab-on-chip systems were only optimized as auxiliary components and are only suitable for sample-limited analyses; therefore, their capabilities may not cope with the requirements of contemporary molecular biology applications; (2) the integrity of these automated lab-on-chip systems and their biochemical operations are still an open question since no protection schemes were developed against adversarial contamination or result-manipulation attacks. Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber-Physical Microfluidic Platforms provides solutions to these challenges by introducing a new design flow based on the realistic modeling of contemporary molecular biology protocols. It also presents a microfluidic security flow that provides a high-level of confidence in the integrity of such protocols. In summary, this book creates a new research field as it bridges the technical skills gap between microfluidic systems and molecular biology protocols but it is viewed from the perspective of an electronic/systems engineer.

Book Cell Analysis on Microfluidics

Download or read book Cell Analysis on Microfluidics written by Jin-Ming Lin and published by Springer. This book was released on 2017-10-25 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed overview of the design, formatting, application, and development of microfluidic chips in the context of cell biology research, enumerating each element involved in microfluidics-based cell analysis, discussing its history, status quo, and future prospects, It also offers an extensive review of the research completed in the past decade, including numerous color figures. The individual chapters are based on the respective authors' studies and experiences, providing tips from the frontline to help researchers overcome bottlenecks in their own work. It highlights a number of cutting-edge techniques, such as 3D cell culture, microfluidic droplet technique, and microfluidic chip-mass spectrometry interfaces, offering a first-hand impression of the latest trends in the field and suggesting new research directions. Serving as both an elementary introduction and advanced guidebook, the book interests and inspires scholars and students who are currently studying microfluidics-based cell analysis methods as well as those who wish to do so.

Book Microfluidics for Single Cell Analysis

Download or read book Microfluidics for Single Cell Analysis written by Jin-Ming Lin and published by Springer Nature. This book was released on 2019-08-28 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor’s laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods.

Book Microfluidic Technologies for Quantitative Single Cell Analysis

Download or read book Microfluidic Technologies for Quantitative Single Cell Analysis written by Richard Novak and published by . This book was released on 2013 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multicellular organisms, from roundworms to humans, are composed of interacting individual cells that give rise to an ensemble behavior. Most current technologies enable observation of only the population-level average and often ignore the vast degree of cell heterogeneity present even in clonal populations. Single cell resolution assays of DNA, RNA, proteins, and other biomolecules can yield insights into the complex interactions present in tissues, organs, and whole organisms. Microfluidic systems facilitate single cell analyses by leveraging the micron-scale geometry for improving sensitivity, decreasing reaction time, decreasing reagents consumption, and improving parallelization and automation for high throughput. Microfluidically-generated droplets, in particular, offer extremely high scalability of reactions and straightforward single cell manipulation. This thesis presents the development of microfluidic droplet generator designs and their application for single cell analysis. Developments in microfabricated chip design presented here have resulted in versatile droplet generation tools for a wide range of applications, while novel microfabrication techniques dramatically reduced fabrication time in commercially-viable materials. A radial micropump design increased throughput per device up to 3x106 droplets per hour, allowing us to detect via digital PCR a single pathogenic E. coli O175 in a background of 105 nonpathogenic bacteria. Developing a rapid nickel mold fabrication method has facilitated prototyping and testing of microfluidic designs in thermoplastic materials in as little as 1-3 hours. These microfabrication innovations have accelerated the pace of device development to meet the needs of single cell analysis and other applications. Microfluidic technologies are opening up research paths that so far have been difficult to pursue using conventional methods. High-throughput droplet generation is used to screen purified DNA from healthy subjects exposed to carcinogens for the lymphoma-related t(14;18) chromosomal translocation with a limit of quantitation of less than 1 mutation in 107 genomes and a dynamic range of 105. We also identify unique breakpoint sites and demonstrate the ability to quantify the relative and absolute mutation frequencies within individuals for subjects with multiple mutation events. For analysis of single cell genomes, we present a novel approach for robust DNA purification and analysis using microfluidic agarose droplet encapsulation of single cells. Agarose provides a rigid yet porous shell around cells that enables purification of whole genomes for thousands of cells in parallel without the loss of single cell fidelity. We apply this method to detecting cells containing the t(14;18) translocation and sequencing two DNA targets per cell. This is extended to 9-plex forensic profiling of single cells, thus enabling analysis of complex crime scene samples with multiple contributors or samples with excessive DNA contamination. Finally, droplets are applied to investigating multiple biological parameters per cell, including growth rate, gene expression, and alternative splicing. We perform cell culture in nanoliter droplets for fast generation and monitoring of colonies originating from single cells. Colonies are subsequently assayed for telomerase hTR RNA and hTERT mRNA expression levels and hTERT splice variants. We observe a large degree of expression level bimodality for several splice variants and significant reductions in bimodality coupled with increases in alpha splicing following exposure to sub-lethal concentrations of the anti-cancer compound curcumin. Prospects for microfluidic droplets are discussed in the context of multiparameter single cell analysis as well as applications of single cell analysis to microfluidic organs-on-a-chip. Understanding basic molecular biology mechanisms from the perspective of single cells will yield insights into behavior of multicellular populations with far-reaching scientific and clinical impacts.

Book Microfluidics and Multi Organs on Chip

Download or read book Microfluidics and Multi Organs on Chip written by P. V. Mohanan and published by Springer Nature. This book was released on 2022-07-11 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the application of microfluidics in cell biology research, chemical biology, and drug discovery. It covers the recent breakthroughs and prospects of organ-on-a-chip, human-on-a-chip, multi-organ-on-a-chip for personalized medicine. The book presents the preclinical studies of organs-on-a-chip, concepts of multiple vascularized organ-on-chips, application of organ-on-a-chip in blood-brain barrier model, culture and co-culture of cells on multi-organ-on-chip and parameter measurements in microfluidic devices. It underscores the advantage of microfluidic devices for developing efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Further, it entails human-on-a-chip for measuring the systemic response as well as immediate effects of an organ reaction on other organs. In summary, this book reviews the development of a microfluidic-based organ-on-a-chip device for the preclinical evaluation, ADME studies of drugs, chemicals, and medical devices. This book is a valuable source for pharma companies, product developers, students, researchers, academicians, and practitioners.

Book Microfluidics for Cellular Applications

Download or read book Microfluidics for Cellular Applications written by Gerardo Perozziello and published by Elsevier. This book was released on 2023-04-13 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics for Cellular Applications describes microfluidic devices for cell screening from a physical, technological and applications point-of-view, presenting a comparison with the cell microenvironment and conventional instruments used in medicine. Microfluidic technologies, protocols, devices for cell screening and treatment have reached an advanced state but are mainly used in research. Sections break them down into practical applications and conventional medical procedures and offers insights and analysis on how higher resolutions and fast operations can be reached. This is an important resource for those from an engineering and technology background who want to understand more and gain additional insights on cell screening processes. - Outlines the major applications of microfluidic devices in medicine and biotechnology - Assesses the major challenges of using microfluidic devices in terms of complexity of the control set-up, ease of use, integration capability, automation level, analysis throughput, content and costs - Describes the major fabrication techniques for assembling effective microfluidic devices for bioapplications

Book Microfluidics for Cells and Other Organisms

Download or read book Microfluidics for Cells and Other Organisms written by Danny van Noort and published by MDPI. This book was released on 2019-10-23 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics-based devices play an important role in creating realistic microenvironments in which cell cultures can thrive. They can, for example, be used to monitor drug toxicity and perform medical diagnostics, and be in a static-, perfusion- or droplet-based device. They can also be used to study cell-cell, cell-matrix or cell-surface interactions. Cells can be either single cells, 3D cell cultures or co-cultures. Other organisms could include bacteria, zebra fish embryo, C. elegans, to name a few.

Book Biological Applications of Microfluidics

Download or read book Biological Applications of Microfluidics written by Frank A. Gomez and published by John Wiley & Sons. This book was released on 2008-02-15 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics has numerous potential applications in biotechnology, pharmaceuticals, the life sciences, defense, public health, and agriculture. This book details recent advances in the biological applications of microfluidics, including cell sorting, DNA sequencing on-a-chip, microchip capillary electrophoresis, and synthesis on a microfluidic format. It covers microfabricated LOC technologies, advanced microfluidic tools, microfluidic culture platforms for stem cell and neuroscience research, and more. This is an all-in-one, hands-on resource for analytical chemists and researchers and an excellent text for students.

Book Microfluidics for Optics and Quantitative Cell Biology

Download or read book Microfluidics for Optics and Quantitative Cell Biology written by James Kyle Campbell and published by . This book was released on 2008 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics is a quickly expanding field with numerous applications. The advent of rapid-prototyping and soft-lithography allow for easy and inexpensive fabrication of microfluidic devices. Fluid manipulation on the microscale allows for new functionalities of devices and components not available on the macroscale. Fluid flows on the microscale are laminar with chemical mixing defined strictly by diffusion allowing us to design microfluidic devices with precise control of fluid flow and chemical concentration. New microfluidic technologies can provide new functionalities for micro-total analysis systems for greater device integration and portability. To expand the utilization of microfluidics, this dissertation discusses new microfluidic techniques and devices. Chapter 2 examines microfluidics for quantitative cell biology. New techniques discussed in this dissertation allow us to use microfluidics to study cellular response on a cell-by-cell basis in stable environments. Part of this chapter includes new architectures for creating chemical concentration gradients in microfluidic devices and their applications cell biology. The rest of Chapter 2 introduces a device which allows for cells to grow to high densities in chemostatic conditions. Chapter 3 introduces the merger of optics and microfluidics named "optofluidics". This subset of microfluidics uses the techniques and materials of microfluidics for optical applications. This dissertation describes optofluidic projects involving light manipulation such as a switch, actuator and lens.

Book Fundamentals of Microfluidics and Lab on a Chip for Biological Analysis and Discovery

Download or read book Fundamentals of Microfluidics and Lab on a Chip for Biological Analysis and Discovery written by Paul C.H. Li and published by CRC Press. This book was released on 2010-02-24 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lab-on-a-chip technology permits us to make many important discoveries that can only be observed at the microscale or the nanoscale. Using this technology, biological and biochemical analyses translate into greater sensitivity, more accurate results, and more valuable findings. Authored by one of the field's pioneering researchers, Fundamentals of

Book Microfluidics and Lab on a chip

Download or read book Microfluidics and Lab on a chip written by Andreas Manz and published by Royal Society of Chemistry. This book was released on 2020-09-24 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidic technology is revolutionising a number of scientific fields, including chemistry, biology, diagnostics, and engineering. The ability to manipulate fluids and objects within networks of micrometre-scale channels allows reductions in processing and analysis times, reagent and sample consumption, and waste production, whilst allowing fine control and monitoring of chemical or biological processes. The integration of multiple components and processes enable “lab-on-a-chip” devices and “micro total analysis systems” that have applications ranging from analytical chemistry, organic synthesis, and clinical diagnostics to cell biology and tissue engineering. This concise, easy-to-read book is perfectly suited for instructing newcomers on the most relevant and important aspects of this exciting and dynamic field, particularly undergraduate and postgraduate students embarking on new studies, or for those simply interested in learning about this widely applicable technology. Written by a team with more than 20 years of experience in microfluidics research and teaching, the book covers a range of topics and techniques including fundamentals (e.g. scaling laws and flow effects), microfabrication and materials, standard operations (e.g. flow control, detection methods) and applications. Furthermore, it includes questions and answers that provide for the needs of students and teachers in the area.

Book Microfluidics for Biologists

Download or read book Microfluidics for Biologists written by Chandra K. Dixit and published by Springer. This book was released on 2016-10-13 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes novel microtechnologies and integration strategies for developing a new class of assay systems to retrieve desired health information from patients in real-time. The selection and integration of sensor components and operational parameters for developing point-of-care (POC) are also described in detail. The basics that govern the microfluidic regimen and the techniques and methods currently employed for fabricating microfluidic systems and integrating biosensors are thoroughly covered. This book also describes the application of microfluidics in the field of cell and molecular biology, single cell biology, disease diagnostics, as well as the commercially available systems that have been either introduced or have the potential of being used in research and development. This is an ideal book for aiding biologists in understanding the fundamentals and applications of microfluidics. This book also: Describes the preparatory methods for developing 3-dimensional microfluidic structures and their use for Lab-on-a-Chip design Explains the significance of miniaturization and integration of sensing components to develop wearable sensors for point-of-care (POC) Demonstrates the application of microfluidics to life sciences and analytical chemistry, including disease diagnostics and separations Motivates new ideas related to novel platforms, valving technology, miniaturized transduction methods, and device integration to develop next generation sequencing Discusses future prospects and challenges of the field of microfluidics in the areas of life sciences in general and diagnostics in particular

Book Multidisciplinary Microfluidic and Nanofluidic Lab on a Chip

Download or read book Multidisciplinary Microfluidic and Nanofluidic Lab on a Chip written by Xiujun (James) Li and published by Newnes. This book was released on 2021-09-19 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip: Principles and Applications provides chemists, biophysicists, engineers, life scientists, biotechnologists, and pharmaceutical scientists with the principles behind the design, manufacture, and testing of life sciences microfluidic systems. This book serves as a reference for technologies and applications in multidisciplinary areas, with an emphasis on quickly developing or new emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology. The book offers practical guidance on how to design, analyze, fabricate, and test microfluidic devices and systems for a wide variety of applications including separations, disease detection, cellular analysis, DNA analysis, proteomics, and drug delivery. Calculations, solved problems, data tables, and design rules are provided to help researchers understand microfluidic basic theory and principles and apply this knowledge to their own unique designs. Recent advances in microfluidics and microsystems for life sciences are impacting chemistry, biophysics, molecular, cell biology, and medicine for applications that include DNA analysis, drug discovery, disease research, and biofluid and environmental monitoring. - Provides calculations, solved problems, data tables and design rules to help understand microfluidic basic theory and principles - Gives an applied understanding of the principles behind the design, manufacture, and testing of microfluidic systems - Emphasizes on quickly developing and emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology