EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Microfluidic Devices for Probing Protein Dynamics with Single molecule Spectroscopy

Download or read book Microfluidic Devices for Probing Protein Dynamics with Single molecule Spectroscopy written by Fabian Dingfelder and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microfluidics and Nanotechnology

Download or read book Microfluidics and Nanotechnology written by Eric Lagally and published by CRC Press. This book was released on 2017-12-19 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: An increasing number of technologies are being used to detect minute quantities of biomolecules and cells. However, it can be difficult to determine which technologies show the most promise for high-sensitivity and low-limit detection in different applications. Microfluidics and Nanotechnology: Biosensing to the Single Molecule Limit details proven approaches for the detection of single cells and even single molecules—approaches employed by the world’s foremost microfluidics and nanotechnology laboratories. While similar books concentrate only on microfluidics or nanotechnology, this book focuses on the combination of soft materials (elastomers and other polymers) with hard materials (semiconductors, metals, and glass) to form integrated detection systems for biological and chemical targets. It explores physical and chemical—as well as contact and noncontact—detection methods, using case studies to demonstrate system capabilities. Presenting a snapshot of the current state of the art, the text: Explains the theory behind different detection techniques, from mechanical resonators for detecting cell density to fiber-optic methods for detecting DNA hybridization, and beyond Examines microfluidic advances, including droplet microfluidics, digital microfluidics for manipulating droplets on the microscale, and more Highlights an array of technologies to allow for a comparison of the fundamental advantages and challenges of each, as well as an appreciation of the power of leveraging scalability and integration to achieve sensitivity at low cost Microfluidics and Nanotechnology: Biosensing to the Single Molecule Limit not only serves as a quick reference for the latest achievements in biochemical detection at the single-cell and single-molecule levels, but also provides researchers with inspiration for further innovation and expansion of the field.

Book Microfluidics for Single Molecule Detection and Material Processing

Download or read book Microfluidics for Single Molecule Detection and Material Processing written by Sung Min Hong and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In the cancer research, it is important to understand protein dynamics which are involved in cell signaling. Therefore, particular protein detection and analysis of target protein behavior are indispensable for current basic cancer research. However, it usually performed by conventional biochemical approaches, which require long process time and a large amount of samples. We have been developed the new applications based on microfluidics and Raster image Correlation spectroscopy (RICS) techniques. A simple microfluidic 3D hydrodynamic flow focusing device has been developed for quantitative determinations of target protein concentrations. The analyte stream was pinched not only horizontally, but also vertically by two sheath streams by introducing step depth cross junction structure. As a result, a triangular cross-sectional flow profile was formed and the laser was focused on the top of the triangular shaped analyte stream. Through this approach, the target protein concentration was successfully determined in cell lysate samples. The RICS technique has been applied to characterize the dynamics of protein 53 (p53) in living cells before and after the treatment with DNA damaging agents. P53 tagged with Green Fluores-cent Protein (GFP) were incubated with and without DNA damaging agents, cisplatin or eptoposide. Then, the diffusion coefficient of GFP-p53 was determined by RICS and it was significantly reduced after the drug treatment while that of the one without drug treatment was not. It is suggested that the drugs induced the interaction of p53 with either other proteins or DNA. This result demonstrates that RICS is able to detect protein-protein or protein-DNA interactions in living cells and it may be useful for the drug screening. As another application of microfluidics, an integrated microfluidic platform was developed for generating collagen microspheres with encapsulation of viable cells. The platform integrated four automated functions on a microfluidic chip, (1) collagen solution cooling system, (2) cell-in-collagen microdroplet generation, (3) collagen microdroplet polymerization, and (4) incubation and extraction of the microspheres. This platform provided a high throughput and easy way to generate uniform dimensions of collagen microspheres encapsulating viable cells that were able to proliferate for more than 1 week.

Book Protein Conformational Dynamics

Download or read book Protein Conformational Dynamics written by Ke-li Han and published by Springer Science & Business Media. This book was released on 2014-01-20 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses how biological molecules exert their function and regulate biological processes, with a clear focus on how conformational dynamics of proteins are critical in this respect. In the last decade, the advancements in computational biology, nuclear magnetic resonance including paramagnetic relaxation enhancement, and fluorescence-based ensemble/single-molecule techniques have shown that biological molecules (proteins, DNAs and RNAs) fluctuate under equilibrium conditions. The conformational and energetic spaces that these fluctuations explore likely contain active conformations that are critical for their function. More interestingly, these fluctuations can respond actively to external cues, which introduces layers of tight regulation on the biological processes that they dictate. A growing number of studies have suggested that conformational dynamics of proteins govern their role in regulating biological functions, examples of this regulation can be found in signal transduction, molecular recognition, apoptosis, protein / ion / other molecules translocation and gene expression. On the experimental side, the technical advances have offered deep insights into the conformational motions of a number of proteins. These studies greatly enrich our knowledge of the interplay between structure and function. On the theoretical side, novel approaches and detailed computational simulations have provided powerful tools in the study of enzyme catalysis, protein / drug design, protein / ion / other molecule translocation and protein folding/aggregation, to name but a few. This work contains detailed information, not only on the conformational motions of biological systems, but also on the potential governing forces of conformational dynamics (transient interactions, chemical and physical origins, thermodynamic properties). New developments in computational simulations will greatly enhance our understanding of how these molecules function in various biological events.

Book Single Molecule Tools  Part A  Fluorescence Based Approaches

Download or read book Single Molecule Tools Part A Fluorescence Based Approaches written by and published by Academic Press. This book was released on 2010-08-17 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: Single molecule tools have begun to revolutionize the molecular sciences, from biophysics to chemistry to cell biology. They hold the promise to be able to directly observe previously unseen molecular heterogeneities, quantitatively dissect complex reaction kinetics, ultimately miniaturize enzyme assays, image components of spatially distributed samples, probe the mechanical properties of single molecules in their native environment, and "just look at the thing" as anticipated by the visionary Richard Feynman already half a century ago. Single Molecule Tools, Part A: Fluorescence Based Approaches captures a snapshot of this vibrant, rapidly expanding field, presenting articles from pioneers in the field intended to guide both the newcomer and the expert through the intricacies of getting single molecule tools. - Includes time-tested core methods and new innovations applicable to any researcher employing single molecule tools - Methods included are useful to both established researchers and newcomers to the field - Relevant background and reference information given for procedures can be used as a guide to developing protocols in a number of disciplines

Book Spectroscopy and Dynamics of Single Molecules

Download or read book Spectroscopy and Dynamics of Single Molecules written by and published by Elsevier. This book was released on 2019-08-14 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectroscopy and Dynamics of Single Molecules: Methods and Applications reviews the most recent developments in spectroscopic methods and applications. Spectroscopic techniques are the chief experimental methods for testing theoretical models and research in this area plays an important role in stimulating new theoretical developments in physical chemistry. This book provides an authoritative insight into the latest advances in the field, highlighting new techniques, current applications, and potential future developments An ideal reference for chemists and physicists alike, Spectroscopy and Dynamics of Single Molecules: Methods and Applications is a useful guide for all those working in the research, design, or application of spectroscopic tools and techniques across a wide range of fields. - Includes the latest research on ultrafast vibrational and electronic dynamics, nonlinear spectroscopies, and single-molecule methods - Makes the content accessible to researchers in chemistry, biophysics, and chemical physics through a rigorous multi-disciplinary approach - Provides content edited by a world-renowned chemist with more than 30 years of experience in research and instruction

Book Comprehensive Biophysics

Download or read book Comprehensive Biophysics written by and published by Academic Press. This book was released on 2012-04-12 with total page 3533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biophysics is a rapidly-evolving interdisciplinary science that applies theories and methods of the physical sciences to questions of biology. Biophysics encompasses many disciplines, including physics, chemistry, mathematics, biology, biochemistry, medicine, pharmacology, physiology, and neuroscience, and it is essential that scientists working in these varied fields are able to understand each other's research. Comprehensive Biophysics, Nine Volume Set will help bridge that communication gap. Written by a team of researchers at the forefront of their respective fields, under the guidance of Chief Editor Edward Egelman, Comprehensive Biophysics, Nine Volume Set provides definitive introductions to a broad array of topics, uniting different areas of biophysics research - from the physical techniques for studying macromolecular structure to protein folding, muscle and molecular motors, cell biophysics, bioenergetics and more. The result is this comprehensive scientific resource - a valuable tool both for helping researchers come to grips quickly with material from related biophysics fields outside their areas of expertise, and for reinforcing their existing knowledge. Biophysical research today encompasses many areas of biology. These studies do not necessarily share a unique identifying factor. This work unites the different areas of research and allows users, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding The field of biophysics counts several journals that are directly and indirectly concerned with the field. There is no reference work that encompasses the entire field and unites the different areas of research through deep foundational reviews. Comprehensive Biophysics fills this vacuum, being a definitive work on biophysics. It will help users apply context to the diverse journal literature offering, and aid them in identifying areas for further research Chief Editor Edward Egelman (E-I-C, Biophysical Journal) has assembled an impressive, world-class team of Volume Editors and Contributing Authors. Each chapter has been painstakingly reviewed and checked for consistent high quality. The result is an authoritative overview which ties the literature together and provides the user with a reliable background information and citation resource

Book Single Molecule Spectroscopy

Download or read book Single Molecule Spectroscopy written by R. Rigler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topics range from single molecule experiments in quantum optics and solid-state physics to analogous investigations in physical chemistry and biophysics.

Book Integrated Microfluidic Device for Single cell High Throughput Screening in Dynamic Gene Expression Analysis

Download or read book Integrated Microfluidic Device for Single cell High Throughput Screening in Dynamic Gene Expression Analysis written by Lawrence Kwan Yeung Hui and published by . This book was released on 2008 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, interest in microfluidics has surged as applications have trended towards novel biological assays. Specifically, the ability of microfluidics to parallelize cellular studies through array-based chip designs has attracted researchers interested in investigating cellular function under a wide variety of environmental conditions. The capability of microfluidic devices to control microenvironment conditions and induce dynamic perturbation to cellular systems makes microfluidics (or "lab-on-a-chip") an attractive platform to study gene expression dynamics. In this project, the functionality of microfluidic technology is exploited to design and construct a device for isolation and observation of cells in high throughput. The integration of a concentration gradient with homogenous medium within each chamber was designed specifically to investigate gene regulation in Saccharomyces cerevisiae under various concentrations of chemical inducers. These devices were designed to sustain cells for extended periods of time with high temporal resolution to study dynamic gene expression in single cells. The device builds on previous studies by probing up to eight distinct cell cultures in parallel. The microfluidic platform was then used to study yeast cells at various levels of inducer perturbations. Further experimentation revealed the utility of a parallel gradient by producing an induction curve of the yeast response. Such high-throughput designs will prove essential to yeast systems biology research as it strives to understand the complex regulatory interactions that dictate cell function by probing vast regions of parameter space.

Book Microfluidic Mixers for the Investigation of Protein Folding Using Synchrotron Radiation Circular Dichroism Spectroscopy

Download or read book Microfluidic Mixers for the Investigation of Protein Folding Using Synchrotron Radiation Circular Dichroism Spectroscopy written by Avinash Sharad Kane and published by . This book was released on 2008 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multidisciplinary Microfluidic and Nanofluidic Lab on a Chip

Download or read book Multidisciplinary Microfluidic and Nanofluidic Lab on a Chip written by Xiujun (James) Li and published by Newnes. This book was released on 2021-09-19 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip: Principles and Applications provides chemists, biophysicists, engineers, life scientists, biotechnologists, and pharmaceutical scientists with the principles behind the design, manufacture, and testing of life sciences microfluidic systems. This book serves as a reference for technologies and applications in multidisciplinary areas, with an emphasis on quickly developing or new emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology. The book offers practical guidance on how to design, analyze, fabricate, and test microfluidic devices and systems for a wide variety of applications including separations, disease detection, cellular analysis, DNA analysis, proteomics, and drug delivery. Calculations, solved problems, data tables, and design rules are provided to help researchers understand microfluidic basic theory and principles and apply this knowledge to their own unique designs. Recent advances in microfluidics and microsystems for life sciences are impacting chemistry, biophysics, molecular, cell biology, and medicine for applications that include DNA analysis, drug discovery, disease research, and biofluid and environmental monitoring. - Provides calculations, solved problems, data tables and design rules to help understand microfluidic basic theory and principles - Gives an applied understanding of the principles behind the design, manufacture, and testing of microfluidic systems - Emphasizes on quickly developing and emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology

Book Biomedical Optical Imaging

    Book Details:
  • Author : James G. Fujimoto
  • Publisher : Oxford University Press
  • Release : 2009-04-22
  • ISBN : 0190287780
  • Pages : 440 pages

Download or read book Biomedical Optical Imaging written by James G. Fujimoto and published by Oxford University Press. This book was released on 2009-04-22 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical optical imaging is a rapidly emerging research area with widespread fundamental research and clinical applications. This book gives an overview of biomedical optical imaging with contributions from leading international research groups who have pioneered many of these techniques and applications. A unique research field spanning the microscopic to the macroscopic, biomedical optical imaging allows both structural and functional imaging. Techniques such as confocal and multiphoton microscopy provide cellular level resolution imaging in biological systems. The integration of this technology with exogenous chromophores can selectively enhance contrast for molecular targets as well as supply functional information on processes such as nerve transduction. Novel techniques integrate microscopy with state-of-the-art optics technology, and these include spectral imaging, two photon fluorescence correlation, nonlinear nanoscopy; optical coherence tomography techniques allow functional, dynamic, nanoscale, and cross-sectional visualization. Moving to the macroscopic scale, spectroscopic assessment and imaging methods such as fluorescence and light scattering can provide diagnostics of tissue pathology including neoplastic changes. Techniques using light diffusion and photon migration are a means to explore processes which occur deep inside biological tissues and organs. The integration of these techniques with exogenous probes enables molecular specific sensitivity.

Book Directory of Graduate Research

Download or read book Directory of Graduate Research written by American Chemical Society. Committee on Professional Training and published by . This book was released on 2005 with total page 1932 pages. Available in PDF, EPUB and Kindle. Book excerpt: Faculties, publications and doctoral theses in departments or divisions of chemistry, chemical engineering, biochemistry and pharmaceutical and/or medicinal chemistry at universities in the United States and Canada.

Book Nanotechnology for Microfluidics

Download or read book Nanotechnology for Microfluidics written by Xingyu Jiang and published by John Wiley & Sons. This book was released on 2020-09-08 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on microfluidics with applications in nanotechnology. The first part summarizes the recent advances and achievements in the field of microfluidic technology, with emphasize on the the influence of nanotechnology. The second part introduces various applications of microfluidics in nanotechnology, such as drug delivery, tissue engineering and biomedical diagnosis.

Book Advanced Photon Counting

Download or read book Advanced Photon Counting written by Peter Kapusta and published by Springer. This book was released on 2015-04-23 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on Time-Correlated Single Photon Counting (TCSPC), a powerful tool allowing luminescence lifetime measurements to be made with high temporal resolution, even on single molecules. Combining spectrum and lifetime provides a “fingerprint” for identifying such molecules in the presence of a background. Used together with confocal detection, this permits single-molecule spectroscopy and microscopy in addition to ensemble measurements, opening up an enormous range of hot life science applications such as fluorescence lifetime imaging (FLIM) and measurement of Förster Resonant Energy Transfer (FRET) for the investigation of protein folding and interaction. Several technology-related chapters present both the basics and current state-of-the-art, in particular of TCSPC electronics, photon detectors and lasers. The remaining chapters cover a broad range of applications and methodologies for experiments and data analysis, including the life sciences, defect centers in diamonds, super-resolution microscopy, and optical tomography. The chapters detailing new options arising from the combination of classic TCSPC and fluorescence lifetime with methods based on intensity fluctuation represent a particularly unique highlight.

Book Molecular Nano Dynamics

Download or read book Molecular Nano Dynamics written by Hiroshi Fukumura and published by John Wiley & Sons. This book was released on 2009-09-09 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: From artificial surfaces to living cells, Molecular Nano Dynamics, Vol. I and Vol. II explores more than 40 important methods for dynamic observation of the nanoscale. Edited by absolute science greats from Japan, this two-volume set covers all important aspects of this topic: nanoscale spectroscopy and characterization tools, nanostructure dynamics, single living cell dynamics, active surfaces, and single crystals. Destined to be the definitive reference work on nanoscale molecular dynamics and their observation for years to come, this is a must-have reference for chemists, physicists, physical chemists, theoretical chemists, and materials scientists.

Book Microscale Acoustofluidics

Download or read book Microscale Acoustofluidics written by Thomas Laurell and published by Royal Society of Chemistry. This book was released on 2014-12-08 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: The manipulation of cells and microparticles within microfluidic systems using external forces is valuable for many microscale analytical and bioanalytical applications. Acoustofluidics is the ultrasound-based external forcing of microparticles with microfluidic systems. It has gained much interest because it allows for the simple label-free separation of microparticles based on their mechanical properties without affecting the microparticles themselves. Microscale Acoustofluidics provides an introduction to the field providing the background to the fundamental physics including chapters on governing equations in microfluidics and perturbation theory and ultrasound resonances, acoustic radiation force on small particles, continuum mechanics for ultrasonic particle manipulation, and piezoelectricity and application to the excitation of acoustic fields for ultrasonic particle manipulation. The book also provides information on the design and characterization of ultrasonic particle manipulation devices as well as applications in acoustic trapping and immunoassays. Written by leading experts in the field, the book will appeal to postgraduate students and researchers interested in microfluidics and lab-on-a-chip applications.