EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Microfabrication of Surface Electrode Ion Traps for Quantum Manipulation

Download or read book Microfabrication of Surface Electrode Ion Traps for Quantum Manipulation written by and published by . This book was released on 2015 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Trapped ions are a promising approach to quantum computation. This approach uses a qubit state which is the atomic state and quantum motional state of a trapped ion to encode information, and uses laser-ion interactions to manipulate the qubit state. A major obstacle to the realization of a practical ion trap quantum computer is decoherence. In trapped ion quantum computation experiments, decoherence is dominated by the uncontrolled heating of ion motional states. In this thesis, we present the detailed microfabrication of several series of surface electrode linear Paul traps made from different electrode materials, followed by the ion motional heating experiment results for these traps. We demonstrate that the ion motional heating strongly depends on fabrication process. In particular, we explore how grain size and grain orientation affect the ion motional heating rate. This thesis is divided into two parts. In the first part, we describe the fabrication of gold, silver, aluminum and niobium traps from different processes, which results in various surface morphologies and grain structures. Ion motional heating rate measurements are then conducted both at cryogenic temperatures and at room temperature. We employ a physical model based on the fluctuating patch potential theory to explain the ion heating behavior. We use gold traps to study the temperature and frequency dependence of the ion heating. We use aluminum traps to study the ion heating dependence on the amorphous dielectric layer. And we use silver traps to study the ion heating dependence on the grain structure. These results suggest that excess ion heating could possibly be suppressed by suitable fabrication selection. In the second part, we present the process of using SU8 to fabricate a multilayer surface electrode point Paul trap, which has the advantage of allowing ion height variation within the same trap and enables testing of the distance dependence of ion heating.

Book Monolithic Microfabricated Ion Trap for Quantum Information Processing

Download or read book Monolithic Microfabricated Ion Trap for Quantum Information Processing written by Fayaz A. Shaikh and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this research is to design, fabricate, and demonstrate a microfabricated monolithic ion trap for applications in quantum computation and quantum simulation. Most current microfabricated ion trap designs are based on planar-segmented surface electrodes. Although promising scalability to trap arrays containing ten to one hundred ions, these planar designs suffer from the challenges of shallow trap depths, radial asymmetry of the confining potential, and electrode charging resulting from laser interactions with dielectric surfaces. In this research, the design, fabrication, and testing of a monolithic and symmetric two-level ion trap is presented. This ion trap overcomes the challenges of surface-electrode ion traps. Numerical electrostatic simulations show that this symmetric trap produces a deep (1 eV for 171Yb+ ion), radially symmetric RF confinement potential. The trap has an angled through-chip slot that allows back-side ion loading and generous through laser access, while avoiding surface-light scattering and dielectric charging that can corrupt the design control electrode compensating potentials. The geometry of the trap and its dimensions are optimized for trapping long and linear ion chains with equal spacing for use with quantum simulation problems and quantum computation architectures.

Book Quantum Computing

    Book Details:
  • Author : National Academies of Sciences, Engineering, and Medicine
  • Publisher : National Academies Press
  • Release : 2019-04-27
  • ISBN : 030947969X
  • Pages : 273 pages

Download or read book Quantum Computing written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-27 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.

Book Atom Chips

    Book Details:
  • Author : Jakob Reichel
  • Publisher : John Wiley & Sons
  • Release : 2011-08-24
  • ISBN : 3527643923
  • Pages : 412 pages

Download or read book Atom Chips written by Jakob Reichel and published by John Wiley & Sons. This book was released on 2011-08-24 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This stimulating discussion of a rapidly developing field is divided into two parts. The first features tutorials in textbook style providing self-contained introductions to the various areas relevant to atom chip research. Part II contains research reviews that provide an integrated account of the current state in an active area of research where atom chips are employed, and explore possible routes of future progress. Depending on the subject, the length of the review and the relative weight of the 'review' and 'outlook' parts vary, since the authors include their own personal view and style in their accounts.

Book Scalable Microchip Ion Traps for Quantum Computation

Download or read book Scalable Microchip Ion Traps for Quantum Computation written by Stephan Schulz and published by Lulu.com. This book was released on 2010-09-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of scalable microfabricated ion traps with multiple segments for the realization of quantum computing is a challenging task in quantum information science. The research on the design, development, fabrication, and operation of the first European micro-trap is shown in this thesis. This chip-based micro-trap is an outstanding candidate towards experiments for a future quantum processor with trapped single ions. In the experiments coherent quantum state manipulation is demonstrated, and sideband cooling to the motional ground state is realized. The heating rate is determined and the applicability for quantum computation is proven. Furthermore planar trap designs are investigated - a planar microparticle trap was built and operated. A linear microfabricated planar trap was operated, showing the proof of concept of a novel designed and fabricated Y-shaped planar trap.

Book Microfabrication Processes and Advancements in Planar Electrode Ion Traps as Mass Spectrometers

Download or read book Microfabrication Processes and Advancements in Planar Electrode Ion Traps as Mass Spectrometers written by Brett Jacob Hansen and published by . This book was released on 2012 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conventional ion traps require machined electrode surfaces to form the electric trapping field. This class of electrode presents significant obstacles when attempting to miniaturize ion traps to create portable mass spectrometers. Machined electrodes lose required precision in shape, smoothness, and alignment as trapping dimensions decrease. Simplified electrode geometries are essential to open the way to miniaturized ion traps.

Book Surface Electrode Ion Trap Device Technology for Quantum Information Science

Download or read book Surface Electrode Ion Trap Device Technology for Quantum Information Science written by and published by . This book was released on 2013 with total page 46 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sensitive  3D Micromotion Compensation in a Surface electrode Ion Trap

Download or read book Sensitive 3D Micromotion Compensation in a Surface electrode Ion Trap written by Amira Madeleine Eltony and published by . This book was released on 2013 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following successful demonstrations of quantum algorithms and error correction with a handful of trapped ions in a macroscopic, machined Paul trap, there is a growing effort to move towards microfabricated traps with all the electrodes on a single chip. These traps, known as surface-electrode ion traps, are more amenable to being shrunk in size and replicated, or integrated with optical components and electronic devices. However, in the shift towards surface-electrode traps, and as traps are miniaturized in general, laser beams are brought closer to electrode surfaces, exacerbating laser-induced charging. Because of their charge, trapped ions are extremely sensitive to stray charges that accumulate on the trap surface. The DC potentials caused by stray charge displace the ion from the null of the RF trapping field, resulting in a fast, driven motion of the ion (known as micromotion) which hinders quantum operations by broadening transitions and causing decoherence. In a surface trap, micromotion detection is difficult as the laser beams used for measurement typically cannot crash into the trap, obscuring ion offsets out of the trap plane. Existing methods for micromotion detection permit ion positioning accurate to the ground state wavepacket size (of order 10 nm), but cannot identify ion offsets out of the trap plane with the same accuracy. Schemes for sensitive compensation often have restrictive requirements such as access to a narrow atomic transition. We introduce a new approach, which permits out-of-plane micromotion compensation to within 10s of nanometers with minimal overhead. Our technique synchronously detects ion excitation along the trap axes when it is driven by secular-frequency sidebands added to the RF electrodes; the excitation amplitude is proportional to the offset from the RF null. We make a detailed theoretical comparison with other techniques for micromotion compensation and demonstrate our technique experimentally.

Book Micro Fabricated Surface Electrode Y Junction Ion Traps

Download or read book Micro Fabricated Surface Electrode Y Junction Ion Traps written by and published by . This book was released on 2011 with total page 29 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Femtosecond Laser Micromachining

Download or read book Femtosecond Laser Micromachining written by Roberto Osellame and published by Springer Science & Business Media. This book was released on 2012-03-05 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.

Book Quantum Information and Coherence

Download or read book Quantum Information and Coherence written by Erika Andersson and published by Springer. This book was released on 2014-07-08 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to ten key topics in quantum information science and quantum coherent phenomena, aimed at graduate-student level. The chapters cover some of the most recent developments in this dynamic research field where theoretical and experimental physics, combined with computer science, provide a fascinating arena for groundbreaking new concepts in information processing. The book addresses both the theoretical and experimental aspects of the subject, and clearly demonstrates how progress in experimental techniques has stimulated a great deal of theoretical effort and vice versa. Experiments are shifting from simply preparing and measuring quantum states to controlling and manipulating them, and the book outlines how the first real applications, notably quantum key distribution for secure communication, are starting to emerge. The chapters cover quantum retrodiction, ultracold quantum gases in optical lattices, optomechanics, quantum algorithms, quantum key distribution, quantum control based on measurement, orbital angular momentum of light, entanglement theory, trapped ions and quantum metrology, and open quantum systems subject to decoherence. The contributing authors have been chosen not just on the basis of their scientific expertise, but also because of their ability to offer pedagogical and well-written contributions which will be of interest to students and established researchers.

Book Towards Improving the Quantum Coherence in Ion Microtraps

Download or read book Towards Improving the Quantum Coherence in Ion Microtraps written by Mariam Akhtarv and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ion traps have a number of applications in optical atomic clocks, quantum metrology and quantum information processing. Quantum coherence is essential in these applications, yet motional decoherence of ions remains a significant limitation. Experiments towards improving the quantum coherence of ions confined in microfabricated traps are presented. Surface contamination, noise on DC sources and instabilities in magnetic field are all potential sources of decoherence that are investigated. Spectroscopy on a single ion aswell as a two ion string using 88Sr+ is then demonstrated. Hydrocarbon contamination on electrode surfaces is a possible sources of electric-field noise that may result in motional heating of the ion and therefore decoherence. A capacitively-coupled RF micro discharge was generated in situ with energies suited to selective removal of surface contamination. The plasma parameters needed for the calculation of the ion bombardment energy, namely the electron density and the gas temperature, were determined using optical emission spectroscopy. For the range of operating parameters tested, the mean ion energies between 0.3 eV and 4.1 eV were calculated. While these energies are below the sputtering threshold for hydrocarbon contamination (12 eV), calculations show that the high energy tail of the ion energy distribution should remove two adsorbate monolayers in as little as 1 min. Furthermore, calculations show that during this time, the distribution is insufficiently energetic to have a significant effect on the Au electrode surface. The results presented here suggest that the microplasma surface processing is suited to in situ selective removal of surface adsorbates from ion microtrap electrodes. If electrical noise present on the electrodes of the trap is resonant with the motion of the ion, ion motional heating can occur and result in a reduced ion coherence time. Therefore it is essential to minimise the electrical noise at the motional frequencies of the ion. A system was created for versatile control of the DC potentials on the ion electrodes.

Book Manufacturing Techniques for Microfabrication and Nanotechnology

Download or read book Manufacturing Techniques for Microfabrication and Nanotechnology written by Marc J. Madou and published by CRC Press. This book was released on 2011-06-13 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for science and engineering students, this text focuses on emerging trends in processes for fabricating MEMS and NEMS devices. The book reviews different forms of lithography, subtractive material removal processes, and additive technologies. Both top-down and bottom-up fabrication processes are exhaustively covered and the merits of the different approaches are compared. Students can use this color volume as a guide to help establish the appropriate fabrication technique for any type of micro- or nano-machine.

Book Quantum Information   Computation

Download or read book Quantum Information Computation written by and published by . This book was released on 2005 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experimental Issues in Coherent Quantum State Manipulation of Trapped Atomic Ions

Download or read book Experimental Issues in Coherent Quantum State Manipulation of Trapped Atomic Ions written by and published by . This book was released on 1998 with total page 71 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods for, and limitations to, the generation of entangled states of trapped atomic ions are examined. As much as possible, state manipulations are described in terms of quantum logic operations since the conditional dynamics implicit in quantum logic is central to the creation of entanglement. Keeping with current interest, some experimental issues in the proposal for trapped-ion quantum computation by J.I. Cirac and P. Zoller (University of Innsbruck) are discussed. Several possible decoherence mechanisms are examined and what may be the more important of these are identified. Some potential applications for entangled states of trapped-ions which lie outside the immediate realm of quantum computation are also discussed.

Book Computational Complexity

Download or read book Computational Complexity written by Robert A. Meyers and published by Springer. This book was released on 2011-10-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The recognition that the collective behavior of the whole system cannot be simply inferred from an understanding of the behavior of the individual components has led to the development of numerous sophisticated new computational and modeling tools with applications to a wide range of scientific, engineering, and societal phenomena. Computational Complexity: Theory, Techniques and Applications presents a detailed and integrated view of the theoretical basis, computational methods, and state-of-the-art approaches to investigating and modeling of inherently difficult problems whose solution requires extensive resources approaching the practical limits of present-day computer systems. This comprehensive and authoritative reference examines key components of computational complexity, including cellular automata, graph theory, data mining, granular computing, soft computing, wavelets, and more.

Book MEMS based Arrays of Micro Ion Traps for Quantum Simulation Scaling

Download or read book MEMS based Arrays of Micro Ion Traps for Quantum Simulation Scaling written by and published by . This book was released on 2006 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this late-start Tier I Seniors Council sponsored LDRD, we have designed, simulated, microfabricated, packaged, and tested ion traps to extend the current quantum simulation capabilities of macro-ion traps to tens of ions in one and two dimensions in monolithically microfabricated micrometer-scaled MEMS-based ion traps. Such traps are being microfabricated and packaged at Sandia's MESA facility in a unique tungsten MEMS process that has already made arrays of millions of micron-sized cylindrical ion traps for mass spectroscopy applications. We define and discuss the motivation for quantum simulation using the trapping of ions, show the results of efforts in designing, simulating, and microfabricating W based MEMS ion traps at Sandia's MESA facility, and describe is some detail our development of a custom based ion trap chip packaging technology that enables the implementation of these devices in quantum physics experiments.