EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Microbial Enhanced Oil Recovery at Simulated Surbsurface Reservoir Conditions

Download or read book Microbial Enhanced Oil Recovery at Simulated Surbsurface Reservoir Conditions written by Tawfic Abdulsalam Obeida and published by . This book was released on 1990 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theory and Practice in Microbial Enhanced Oil Recovery

Download or read book Theory and Practice in Microbial Enhanced Oil Recovery written by Kun Sang Lee and published by Gulf Professional Publishing. This book was released on 2020-07-18 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Selection of the optimal recovery method is significantly influenced by economic issues in today’s oil and gas markets. Consequently, the development of cost-effective technologies, which bring maximum oil recovery, is the main interest in today’s petroleum research communities. Theory and Practice in Microbial Enhanced Oil Recovery provides the fundamentals, latest research and creditable field applications. Microbial Enhanced Oil Recovery (MEOR) is potentially a low-priced and eco-friendly technique in which different microorganisms and their metabolic products are implemented to recover the remaining oil in the reservoir. Despite drastic advantages of MEOR technology, it is still not fully supported in the industry due to lack of knowledge on microbial activities and their complexity of the process. While some selected strategies have demonstrated the feasibility to be used on a mass scale through both lab and field trials, more research remains to implement MEOR into more oil industry practices. This reference delivers comprehensive descriptions on the fundamentals including basic theories on geomicrobiology, experiments and modeling, as well as current tested field applications. Theory and Practice in Microbial Enhanced Oil Recovery gives engineers and researchers the tool needed to stay up to date on this evolving and more sustainable technology. Covers fundamental screening criteria and theories selective plugging and mobility control mechanisms Describes the basic effects on environmental parameters and the mechanics of simulation, including microbial growth kinetics Applies up to date practical applications proven in both the lab and the field

Book Microbial Enhanced Oil Recovery

Download or read book Microbial Enhanced Oil Recovery written by T.F. Yen and published by CRC Press. This book was released on 1989-12-21 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a comprehensive review that consolidates all of the pertinent information available. Microbial Enhanced Oil Recovery (MEOR) involves many scientific disciplines, many different approaches, and many different countries. This book supplies the information needed for continued development of MEO methods and points out areas where information is lacking and where more research is needed. This easy-to-use resource focuses on the three types of MEOR processes which can be utilized to recover oil from reservoirs. Successful MEOR involves contributions from petroleum, chemical, genetic, environmental, geotechnical, and bioengineering. Also, geology, chemistry, and microbiology play a major role as well. This critical review book includes a comprehensive reference list and opens the lines of communication among the various fields of study. This work will also encourage the exchange of ideas and interaction necessary for success in this quickly developing technology. Scientists, researchers, and practitioners will find this text to be interesting, informative, and indispensable.consolidatesR

Book Microbial Enhanced Oil Recovery   Advanced Reservoir Simulation

Download or read book Microbial Enhanced Oil Recovery Advanced Reservoir Simulation written by Sidsel Marie Nielsen and published by . This book was released on 2010 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microbial Enhanced Oil Recovery

Download or read book Microbial Enhanced Oil Recovery written by Lalit Pandey and published by Springer Nature. This book was released on 2021-10-21 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fundamentals of the reservoir and interfacial engineering. The book systematically starts with the basics of primary, secondary and tertiary (enhanced) oil recovery and emphasizes on the theory of microbial-enhanced oil recovery (MEOR) and its potential toward recovery of oil in place. Different approaches of MEOR such as in-situ, ex-situ, and integration of chemical- and microbial-enhanced oil recovery (EOR) are discussed in detail. This book highlights the link between the effectiveness of MEOR and the local reservoir conditions, crude oil characteristics, and indigenous microbial community. The latest implementations of MEOR across the globe are highlighted as case studies to outline the potential as well as the scope of MEOR. Given the topics covered, this book will be useful for professionals and researchers working in the areas of petroleum science and engineering, chemical engineering, biotechnology, bioengineering, and other related fields.

Book Microbial Enhancement of Oil Recovery   Recent Advances

Download or read book Microbial Enhancement of Oil Recovery Recent Advances written by E.C. Donaldson and published by Elsevier. This book was released on 1991-04-03 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This conference was instituted to examine field activities in Microbial Enhancement of Oil Recovery. The U.S. Department of Energy has sponsored several field projects and the details from some of these were presented, as well as a few from industry. The balance of the program was concerned with new developments in research. Today's oil production technology leaves one third to one half of the original oil in place in the reservoir at abandonment of secondary recovery (waterflooding). This leaves a very large target for microbial enhanced oil recovery which was shown by the research papers of this conference to be capable of producing up to 50% of the residual oil. The field trials show that the normal projected oil production decline curve can be reversed, or leveled off by microbial enhancement of oil recovery. This conference has shown that a variety of applications are possible to correct oilfield problems as well as to enhance oil recovery. Among these is the suppression of hydrogen sulfide production which alone is a tremendous advance because of the large quantity of sour oil production. If hydrogen sulfide production can be curtailed it would increase the value of the produced oil, decrease it toxicity, and largely decrease it corrosiveness. All of these would be welcome both in the field and at the petroleum refinery where special precautions must be taken to process sour crude oil. Another very important discovery is the ability of certain bacteria to eliminate paraffin deposition around the producing well and in the tubulars. This is a welcome improvement for many producers who have considerable difficulty in controlling paraffin deposition.

Book Enhanced Oil Recovery Field Case Studies

Download or read book Enhanced Oil Recovery Field Case Studies written by Lewis Brown and published by Elsevier Inc. Chapters. This book was released on 2013-04-10 with total page 33 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microbial-enhanced oil recovery (MEOR) is the use of microorganisms to increase the recovery of oil from existing oil reservoirs. There are nearly 400 US patents dealing with MEOR, some of which add microorganisms to nearly depleted oil reservoirs while others rely on the indigenous microorganisms. The patent literature is reviewed and two successful field trials by the author are described. A completed field trial using microbial permeability profile modification (MPPM) in a field using waterflooding as the secondary method of oil recovery was proven to recover over 360,000bbl of oil since 2004 and is predicted to recover another 230,000bbl of oil by 2018. A second field trial using MPPM is being employed in a field with a petroliferous formation at 115°C. The field is undergoing CO2 flooding as the secondary recovery method and MPPM has been proven to produce extra oil from five surrounding wells.

Book Microbial Enhanced Oil Recovery

Download or read book Microbial Enhanced Oil Recovery written by E.C. Donaldson and published by Newnes. This book was released on 1989-02-01 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of microorganisms and their metabolic products to stimulate oil production is currently receiving renewed interest worldwide. This technique involves the injection of selected microorganisms into the reservoir and the subsequent stimulation and transportation of their in situ growth products, in order that their presence will aid in further reduction of residual oil left in the reservoir after secondary recovery is exhausted. Although unlikely to replace conventional microbial enhanced oil recovery, this unique process seems superior in many respects. Self-duplicating units, namely the bacteria cells, are injected into the reservoir and by their in situ multiplication they magnify beneficial effects. This new approach to enhancement of oil recovery was initiated in 1980 and the first results were published in the proceedings of two international conferences. This book evolved from these conferences, and was designed to encompass all current aspects of microbial enhanced oil recovery: the development of specific cultures, increase of the population for field application, various methods for field applications and the results, and the environmental concerns associated with this newly developed technology. It provides a comprehensive treatise of the subject, and is arranged to show the laboratory development of microbes suited to microbial enhanced oil recovery and the perpetuation of the special cultures in a petroleum reservoir. Thus, this book has specific usefulness in the laboratory, the oilfield and the classroom. Although not written as a text book, it can be used as a reference volume for graduate studies in enhanced oil recovery.

Book Microbial Enhanced Oil Recovery and Wettability Research Program

Download or read book Microbial Enhanced Oil Recovery and Wettability Research Program written by United States Department of Energy and published by . This book was released on 1991 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Further Model Development and Application of UTCHEM for Microbial Enhanced Oil Recovery and Reservoir Souring

Download or read book Further Model Development and Application of UTCHEM for Microbial Enhanced Oil Recovery and Reservoir Souring written by Pooneh Hosseininoosheri and published by . This book was released on 2016 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research presents an improved simulator to predict the enhanced oil recovery after applying microbial enhanced oil recovery (MEOR) technique and the onset of reservoir souring in sea-water injected reservoirs. The model is developed to study the effect of temperature, salinity, and pH on the growth of bacteria which are responsible for producing in-situ bioproducts in MEOR and causing microbial reservoir souring. The effects of environmental factors (i.e., pH, salinity, and temperature) are implemented into a four-phase chemical flooding reservoir simulator (UTCHEM). In the MEOR process, nutrients and natural bacteria are injected into a reservoir and both indigenous and injected microorganisms are able to react and then generate bioproducts based on in-situ reactions. In this study, we considered three different mechanisms proposed for MEOR: biosurfactant-dominated MEOR, biopolymer-dominated MEOR, and biomass-dominated MEOR. Results show that in-situ bioproduct generation rates can be thoroughly modeled based on environmental factors. Simulation results show 10-15% incremental oil recovery using in-situ biosurfactant compared to waterflooding, biopolymer can increase the oil recovery by 3%, and biomass can contribute to oil production by increasing the recovery by 6%. The simulation results show that nutrient concentration, salinity, and temperature are the most significant parameters influencing oil recovery, whereas pH has an insignificant effect. Reservoir souring is a phenomenon that occurs because of in-situ biodegradation reactions and is modeled in the present study. Sulfate-reducing bacteria (SRB) can convert sulfate ions into hydrogen sulfide by oxidizing a carbon source. This phenomenon is called reservoir souring when it occurs in water-flooded reservoirs. The generated H2S content affects the properties of rocks, reduces the value of produced hydrocarbon, causes corrosion in production facilities, and has health and safety issues. Because of the severity of the problem, several attempts have been made to model and predict the onset of souring. However, there are high uncertainties because of many inestimable and uncertain parameters (e.g., biodegradation parameters, sulfate concentration, reservoir pH, salinity, and temperature). Therefore, the capability of UTCHEM for calculating the maximum growth rate in terms of temperature, salinity, and pH helped us to show the environmental effect on the process. We also investigated the effect of maximum growth rate and available sulfate on the biodegradation process that leads to reservoir souring. In summary, our results show that the microbial reservoir souring process can be modeled based on environmental factors. More importantly, the results show the high sensitivity of the process to different parameters.

Book Microbial Enhanced Oil Recovery Research  Final Report  Annex 5

Download or read book Microbial Enhanced Oil Recovery Research Final Report Annex 5 written by and published by . This book was released on 1993 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this project was to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. An order of magnitude analysis indicated that selective plugging and the production of biosurfactants are the two most likely mechanisms for the mobilization of oil in microbial enhanced oil recovery (MEOR). The latter, biosurfactant production, is easier to control within a reservoir environment and was investigated in some detail. An extensive literature survey indicated that the bacterium Bacillus licheniformis JF-2 produces a very effective surface active agent capable of increasing the capillary number to values sufficiently low for oil mobilization. In addition, earlier studies had shown that growth of this bacterium and biosurfactant production occur under conditions that are typically encountered in MEOR, namely temperatures up to 55°C, lack of oxygen and salinities of up to 10% w/v. The chemical structure of the surfactant, its interfacial properties and its production by fermentation were characterized in some detail. In parallel, a set of experiments as conducted to measure the transport of Bacillus licheniformis JF-2 in sandpacks. It was shown that the determining parameters for cell transport in porous media are: cell size and degree of coagulation, presence of dispersants, injection velocity and cell concentration. The mechanisms of bacteria retention within the pores of the reservoir were analyzed based on heuristic arguments. A mathematical simulator of MEOR was developed using conservation equations in which the mechanisms of bacteria retention and the growth kinetics of the cells were incorporated. The predictions of the model agreed reasonably well with experimental results.

Book Microbial Enhanced Oil Recovery Research  Annex 5  Summary Annual Report

Download or read book Microbial Enhanced Oil Recovery Research Annex 5 Summary Annual Report written by and published by . This book was released on 1990 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this work is to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. Specific goals include: (1) investigation of the mechanisms of microbially induced oil mobilization; (2) the production, isolation, chemical characterization and study of the physical properties of microbially produced surfactants; (3) model studies in sandstone cores for the characterization of the interactions between growing microbially cultures and oil reservoirs; (4) development of simulators for MEOR; and (5) design of operational strategies for the sequential injection of microorganisms and nutrient in reservoirs are: (1) systematic discussion of the mechanisms important in MEOR processes; (2) Measurement of the growth characteristics of Bacillus Licheniformis under various conditions of pH, temperature and salt concentration for both aerobic and anaerobic growth.; (3) measurement of interfacial tension reducing ability of the biosurfactant under different conditions of pH and salt concentration; (4) development of some preliminary methods to concentrate and characterize the biosurfactant; (5) development of a compositional numerical simulator for MEOR processes; and (6) Measurement of the lowest interfacial tension (IFT) value reported for biosurfactants to date. Demonstration of the fact that the low IFT values required for oil recovery can be attained with biosurfactants.

Book Consequences of Microbial Interactions with Hydrocarbons  Oils  and Lipids  Production of Fuels and Chemicals

Download or read book Consequences of Microbial Interactions with Hydrocarbons Oils and Lipids Production of Fuels and Chemicals written by Sang Yup Lee and published by Springer. This book was released on 2018-04-06 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the current states of microbial and related technologies that have been developed for the efficient production of chemicals, fuels and materials by integrating strain and enzyme development, fermentation processes, and downstream processes. The book also covers how microbes and microbial products can be employed to facilitate petroleum recovery. Global consequences of bio-based production of chemicals, fuels and materials are also discussed with insights.

Book Chemical Enhanced Oil Recovery

Download or read book Chemical Enhanced Oil Recovery written by Patrizio Raffa and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-22 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).

Book Microbial Enhanced Oil Recovery Research

Download or read book Microbial Enhanced Oil Recovery Research written by and published by . This book was released on 1990 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this work is to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. Specific goals include: (1) investigation of the mechanisms of microbially induced oil mobilization; (2) the production, isolation, chemical characterization and study of the physical properties of microbially produced surfactants; (3) model studies in sandstone cores for the characterization of the interactions between growing microbially cultures and oil reservoirs; (4) development of simulators for MEOR; and (5) design of operational strategies for the sequential injection of microorganisms and nutrient in reservoirs are: (1) systematic discussion of the mechanisms important in MEOR processes; (2) Measurement of the growth characteristics of Bacillus Licheniformis under various conditions of pH, temperature and salt concentration for both aerobic and anaerobic growth.; (3) measurement of interfacial tension reducing ability of the biosurfactant under different conditions of pH and salt concentration; (4) development of some preliminary methods to concentrate and characterize the biosurfactant; (5) development of a compositional numerical simulator for MEOR processes; and (6) Measurement of the lowest interfacial tension (IFT) value reported for biosurfactants to date. Demonstration of the fact that the low IFT values required for oil recovery can be attained with biosurfactants.