EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Metric Spaces

    Book Details:
  • Author : Satish Shirali
  • Publisher : Springer Science & Business Media
  • Release : 2006
  • ISBN : 9781852339227
  • Pages : 238 pages

Download or read book Metric Spaces written by Satish Shirali and published by Springer Science & Business Media. This book was released on 2006 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the first books to be dedicated specifically to metric spaces Full of worked examples, to get complex ideas across more easily

Book Lectures on Analysis on Metric Spaces

Download or read book Lectures on Analysis on Metric Spaces written by Juha Heinonen and published by Springer Science & Business Media. This book was released on 2001 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.

Book Metric Spaces

    Book Details:
  • Author : Mícheál O'Searcoid
  • Publisher : Springer Science & Business Media
  • Release : 2006-12-26
  • ISBN : 1846286271
  • Pages : 318 pages

Download or read book Metric Spaces written by Mícheál O'Searcoid and published by Springer Science & Business Media. This book was released on 2006-12-26 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: The abstract concepts of metric spaces are often perceived as difficult. This book offers a unique approach to the subject which gives readers the advantage of a new perspective on ideas familiar from the analysis of a real line. Rather than passing quickly from the definition of a metric to the more abstract concepts of convergence and continuity, the author takes the concrete notion of distance as far as possible, illustrating the text with examples and naturally arising questions. Attention to detail at this stage is designed to prepare the reader to understand the more abstract ideas with relative ease.

Book Metric Spaces of Non Positive Curvature

Download or read book Metric Spaces of Non Positive Curvature written by Martin R. Bridson and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.

Book Topology of Metric Spaces

Download or read book Topology of Metric Spaces written by S. Kumaresan and published by Alpha Science Int'l Ltd.. This book was released on 2005 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Topology of Metric Spaces gives a very streamlined development of a course in metric space topology emphasizing only the most useful concepts, concrete spaces and geometric ideas to encourage geometric thinking, to treat this as a preparatory ground for a general topology course, to use this course as a surrogate for real analysis and to help the students gain some perspective of modern analysis." "Eminently suitable for self-study, this book may also be used as a supplementary text for courses in general (or point-set) topology so that students will acquire a lot of concrete examples of spaces and maps."--BOOK JACKET.

Book Metric Spaces

    Book Details:
  • Author : Victor Bryant
  • Publisher : Cambridge University Press
  • Release : 1985-05-02
  • ISBN : 9780521318976
  • Pages : 116 pages

Download or read book Metric Spaces written by Victor Bryant and published by Cambridge University Press. This book was released on 1985-05-02 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to metric spaces for those interested in the applications as well as theory.

Book Set Theory and Metric Spaces

Download or read book Set Theory and Metric Spaces written by Irving Kaplansky and published by American Mathematical Society. This book was released on 2020-09-10 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book that could profitably be read by many graduate students or by seniors in strong major programs … has a number of good features. There are many informal comments scattered between the formal development of theorems and these are done in a light and pleasant style. … There is a complete proof of the equivalence of the axiom of choice, Zorn's Lemma, and well-ordering, as well as a discussion of the use of these concepts. There is also an interesting discussion of the continuum problem … The presentation of metric spaces before topological spaces … should be welcomed by most students, since metric spaces are much closer to the ideas of Euclidean spaces with which they are already familiar. —Canadian Mathematical Bulletin Kaplansky has a well-deserved reputation for his expository talents. The selection of topics is excellent. — Lance Small, UC San Diego This book is based on notes from a course on set theory and metric spaces taught by Edwin Spanier, and also incorporates with his permission numerous exercises from those notes. The volume includes an Appendix that helps bridge the gap between metric and topological spaces, a Selected Bibliography, and an Index.

Book Introduction to Metric and Topological Spaces

Download or read book Introduction to Metric and Topological Spaces written by Wilson A Sutherland and published by Oxford University Press. This book was released on 2009-06-18 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the ways in which topology has influenced other branches of mathematics in the past few decades is by putting the study of continuity and convergence into a general setting. This new edition of Wilson Sutherland's classic text introduces metric and topological spaces by describing some of that influence. The aim is to move gradually from familiar real analysis to abstract topological spaces, using metric spaces as a bridge between the two. The language of metric and topological spaces is established with continuity as the motivating concept. Several concepts are introduced, first in metric spaces and then repeated for topological spaces, to help convey familiarity. The discussion develops to cover connectedness, compactness and completeness, a trio widely used in the rest of mathematics. Topology also has a more geometric aspect which is familiar in popular expositions of the subject as `rubber-sheet geometry', with pictures of Möbius bands, doughnuts, Klein bottles and the like; this geometric aspect is illustrated by describing some standard surfaces, and it is shown how all this fits into the same story as the more analytic developments. The book is primarily aimed at second- or third-year mathematics students. There are numerous exercises, many of the more challenging ones accompanied by hints, as well as a companion website, with further explanations and examples as well as material supplementary to that in the book.

Book Elements of Metric Spaces

Download or read book Elements of Metric Spaces written by Manabendra Nath Mukherjee and published by Academic Publishers. This book was released on 2010 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Real Variables with Basic Metric Space Topology

Download or read book Real Variables with Basic Metric Space Topology written by Robert B. Ash and published by Courier Corporation. This book was released on 2014-07-28 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for a first course in real variables, this text presents the fundamentals for more advanced mathematical work, particularly in the areas of complex variables, measure theory, differential equations, functional analysis, and probability. Geared toward advanced undergraduate and graduate students of mathematics, it is also appropriate for students of engineering, physics, and economics who seek an understanding of real analysis. The author encourages an intuitive approach to problem solving and offers concrete examples, diagrams, and geometric or physical interpretations of results. Detailed solutions to the problems appear within the text, making this volume ideal for independent study. Topics include metric spaces, Euclidean spaces and their basic topological properties, sequences and series of real numbers, continuous functions, differentiation, Riemann-Stieltjes integration, and uniform convergence and applications.

Book Metric Spaces of Fuzzy Sets

Download or read book Metric Spaces of Fuzzy Sets written by Phil Diamond and published by World Scientific. This book was released on 1994 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary aim of the book is to provide a systematic development of the theory of metric spaces of normal, upper semicontinuous fuzzy convex fuzzy sets with compact support sets, mainly on the base space ?n. An additional aim is to sketch selected applications in which these metric space results and methods are essential for a thorough mathematical analysis.This book is distinctly mathematical in its orientation and style, in contrast with many of the other books now available on fuzzy sets, which, although all making use of mathematical formalism to some extent, are essentially motivated by and oriented towards more immediate applications and related practical issues. The reader is assumed to have some previous undergraduate level acquaintance with metric spaces and elementary functional analysis.

Book Gradient Flows

    Book Details:
  • Author : Luigi Ambrosio
  • Publisher : Springer Science & Business Media
  • Release : 2008-10-29
  • ISBN : 376438722X
  • Pages : 333 pages

Download or read book Gradient Flows written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2008-10-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.

Book An Invitation to Alexandrov Geometry

Download or read book An Invitation to Alexandrov Geometry written by Stephanie Alexander and published by Springer. This book was released on 2019-05-08 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.

Book An Introduction to Metric Spaces and Fixed Point Theory

Download or read book An Introduction to Metric Spaces and Fixed Point Theory written by Mohamed A. Khamsi and published by John Wiley & Sons. This book was released on 2011-10-14 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diese Einfuhrung in das Gebiet der metrischen Raume richtet sich in erster Linie nicht an Spezialisten, sondern an Anwender der Methode aus den verschiedensten Bereichen der Naturwissenschaften. Besonders ausfuhrlich und anschaulich werden die Grundlagen von metrischen Raumen und Banach-Raumen erklart, Anhange enthalten Informationen zu verschiedenen Schlusselkonzepten der Mengentheorie (Zornsches Lemma, Tychonov-Theorem, transfinite Induktion usw.). Die hinteren Kapitel des Buches beschaftigen sich mit fortgeschritteneren Themen.

Book Topics on Analysis in Metric Spaces

Download or read book Topics on Analysis in Metric Spaces written by Luigi Ambrosio and published by Oxford University Press, USA. This book was released on 2004 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the main mathematical prerequisites for analysis in metric spaces. It covers abstract measure theory, Hausdorff measures, Lipschitz functions, covering theorums, lower semicontinuity of the one-dimensional Hausdorff measure, Sobolev spaces of maps between metric spaces, and Gromov-Hausdorff theory, all developed ina general metric setting. The existence of geodesics (and more generally of minimal Steiner connections) is discussed on general metric spaces and as an application of the Gromov-Hausdorff theory, even in some cases when the ambient space is not locally compact. A brief and very general description of the theory of integration with respect to non-decreasing set functions is presented following the Di Giorgi method of using the 'cavalieri' formula as the definition of the integral. Based on lecture notes from Scuola Normale, this book presents the main mathematical prerequisites for analysis in metric spaces. Supplemented with exercises of varying difficulty it is ideal for a graduate-level short course for applied mathematicians and engineers.

Book Metric Spaces

    Book Details:
  • Author : Mícheál O'Searcoid
  • Publisher : Springer
  • Release : 2009-10-12
  • ISBN : 9781848004948
  • Pages : 304 pages

Download or read book Metric Spaces written by Mícheál O'Searcoid and published by Springer. This book was released on 2009-10-12 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The abstract concepts of metric spaces are often perceived as difficult. This book offers a unique approach to the subject which gives readers the advantage of a new perspective on ideas familiar from the analysis of a real line. Rather than passing quickly from the definition of a metric to the more abstract concepts of convergence and continuity, the author takes the concrete notion of distance as far as possible, illustrating the text with examples and naturally arising questions. Attention to detail at this stage is designed to prepare the reader to understand the more abstract ideas with relative ease.

Book New Trends on Analysis and Geometry in Metric Spaces

Download or read book New Trends on Analysis and Geometry in Metric Spaces written by Fabrice Baudoin and published by Springer Nature. This book was released on 2022-02-04 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.