EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Methods of Homological Algebra

Download or read book Methods of Homological Algebra written by Sergei I. Gelfand and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homological algebra first arose as a language for describing topological prospects of geometrical objects. As with every successful language it quickly expanded its coverage and semantics, and its contemporary applications are many and diverse. This modern approach to homological algebra, by two leading writers in the field, is based on the systematic use of the language and ideas of derived categories and derived functors. Relations with standard cohomology theory (sheaf cohomology, spectral sequences, etc.) are described. In most cases complete proofs are given. Basic concepts and results of homotopical algebra are also presented. The book addresses people who want to learn about a modern approach to homological algebra and to use it in their work.

Book Homological Algebra

    Book Details:
  • Author : S.I. Gelfand
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-01
  • ISBN : 3642579116
  • Pages : 229 pages

Download or read book Homological Algebra written by S.I. Gelfand and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.

Book An Introduction to Homological Algebra

Download or read book An Introduction to Homological Algebra written by Charles A. Weibel and published by Cambridge University Press. This book was released on 1995-10-27 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.

Book A Course in Homological Algebra

Download or read book A Course in Homological Algebra written by P.J. Hilton and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.

Book An Introduction to Homological Algebra

Download or read book An Introduction to Homological Algebra written by Northcott and published by Cambridge University Press. This book was released on 1960 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homological algebra, because of its fundamental nature, is relevant to many branches of pure mathematics, including number theory, geometry, group theory and ring theory. Professor Northcott's aim is to introduce homological ideas and methods and to show some of the results which can be achieved. The early chapters provide the results needed to establish the theory of derived functors and to introduce torsion and extension functors. The new concepts are then applied to the theory of global dimensions, in an elucidation of the structure of commutative Noetherian rings of finite global dimension and in an account of the homology and cohomology theories of monoids and groups. A final section is devoted to comments on the various chapters, supplementary notes and suggestions for further reading. This book is designed with the needs and problems of the beginner in mind, providing a helpful and lucid account for those about to begin research, but will also be a useful work of reference for specialists. It can also be used as a textbook for an advanced course.

Book Computational Methods in Commutative Algebra and Algebraic Geometry

Download or read book Computational Methods in Commutative Algebra and Algebraic Geometry written by Wolmer Vasconcelos and published by Springer Science & Business Media. This book was released on 2004-05-18 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ACM volume deals with tackling problems that can be represented by data structures which are essentially matrices with polynomial entries, mediated by the disciplines of commutative algebra and algebraic geometry. The discoveries stem from an interdisciplinary branch of research which has been growing steadily over the past decade. The author covers a wide range, from showing how to obtain deep heuristics in a computation of a ring, a module or a morphism, to developing means of solving nonlinear systems of equations - highlighting the use of advanced techniques to bring down the cost of computation. Although intended for advanced students and researchers with interests both in algebra and computation, many parts may be read by anyone with a basic abstract algebra course.

Book Homological Algebra  PMS 19   Volume 19

Download or read book Homological Algebra PMS 19 Volume 19 written by Henry Cartan and published by Princeton University Press. This book was released on 2016-06-02 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: When this book was written, methods of algebraic topology had caused revolutions in the world of pure algebra. To clarify the advances that had been made, Cartan and Eilenberg tried to unify the fields and to construct the framework of a fully fledged theory. The invasion of algebra had occurred on three fronts through the construction of cohomology theories for groups, Lie algebras, and associative algebras. This book presents a single homology (and also cohomology) theory that embodies all three; a large number of results is thus established in a general framework. Subsequently, each of the three theories is singled out by a suitable specialization, and its specific properties are studied. The starting point is the notion of a module over a ring. The primary operations are the tensor product of two modules and the groups of all homomorphisms of one module into another. From these, "higher order" derived of operations are obtained, which enjoy all the properties usually attributed to homology theories. This leads in a natural way to the study of "functors" and of their "derived functors." This mathematical masterpiece will appeal to all mathematicians working in algebraic topology.

Book Commutative Algebra

    Book Details:
  • Author : David Eisenbud
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-01
  • ISBN : 1461253500
  • Pages : 784 pages

Download or read book Commutative Algebra written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.

Book Homological Theory of Representations

Download or read book Homological Theory of Representations written by Henning Krause and published by Cambridge University Press. This book was released on 2021-11-18 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern developments in representation theory rely heavily on homological methods. This book for advanced graduate students and researchers introduces these methods from their foundations up and discusses several landmark results that illustrate their power and beauty. Categorical foundations include abelian and derived categories, with an emphasis on localisation, spectra, and purity. The representation theoretic focus is on module categories of Artin algebras, with discussions of the representation theory of finite groups and finite quivers. Also covered are Gorenstein and quasi-hereditary algebras, including Schur algebras, which model polynomial representations of general linear groups, and the Morita theory of derived categories via tilting objects. The final part is devoted to a systematic introduction to the theory of purity for locally finitely presented categories, covering pure-injectives, definable subcategories, and Ziegler spectra. With its clear, detailed exposition of important topics in modern representation theory, many of which were unavailable in one volume until now, it deserves a place in every representation theorist's library.

Book Fundamentals of Advanced Mathematics 1

Download or read book Fundamentals of Advanced Mathematics 1 written by Henri Bourles and published by Elsevier. This book was released on 2017-07-10 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This precis, comprised of three volumes, of which this book is the first, exposes the mathematical elements which make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. This first volume focuses primarily on algebraic questions: categories and functors, groups, rings, modules and algebra. Notions are introduced in a general framework and then studied in the context of commutative and homological algebra; their application in algebraic topology and geometry is therefore developed. These notions play an essential role in algebraic analysis (analytico-algebraic systems theory of ordinary or partial linear differential equations). The book concludes with a study of modules over the main types of rings, the rational canonical form of matrices, the (commutative) theory of elemental divisors and their application in systems of linear differential equations with constant coefficients. - Part of the New Mathematical Methods, Systems, and Applications series - Presents the notions, results, and proofs necessary to understand and master the various topics - Provides a unified notation, making the task easier for the reader. - Includes several summaries of mathematics for engineers

Book Algorithmic Methods in Non Commutative Algebra

Download or read book Algorithmic Methods in Non Commutative Algebra written by J.L. Bueso and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc.

Book Lectures on Algebraic Geometry I

Download or read book Lectures on Algebraic Geometry I written by Günter Harder and published by Springer Science & Business Media. This book was released on 2008-08-01 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them.

Book Introduction to Categories  Homological Algebra and Sheaf Cohomology

Download or read book Introduction to Categories Homological Algebra and Sheaf Cohomology written by J. R. Strooker and published by Cambridge University Press. This book was released on 2009-01-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Categories, homological algebra, sheaves and their cohomology furnish useful methods for attacking problems in a variety of mathematical fields. This textbook provides an introduction to these methods, describing their elements and illustrating them by examples.

Book Algebraic Geometry and Commutative Algebra

Download or read book Algebraic Geometry and Commutative Algebra written by Siegfried Bosch and published by Springer Nature. This book was released on 2022-04-22 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.

Book Methods of Homological Algebra

Download or read book Methods of Homological Algebra written by Sergei I. Gelfand and published by Springer Science & Business Media. This book was released on 2002-11-26 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern approach to homological algebra by two leading writers in the field is based on the systematic use of the language and ideas of derived categories and derived functors. It describes relations with standard cohomology theory and provides complete proofs. Coverage also presents basic concepts and results of homotopical algebra. This second edition contains numerous corrections.

Book Homological Methods in Commutative Algebra

Download or read book Homological Methods in Commutative Algebra written by S. Raghavan and published by . This book was released on 1975 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Algebra V

    Book Details:
  • Author : Alekseĭ Ivanovich Kostrikin
  • Publisher : Springer Verlag
  • Release : 1994
  • ISBN : 9780387533735
  • Pages : 222 pages

Download or read book Algebra V written by Alekseĭ Ivanovich Kostrikin and published by Springer Verlag. This book was released on 1994 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: