Download or read book Methods for Electromagnetic Field Analysis written by Ismo V. Lindell and published by Wiley-IEEE Press. This book was released on 1996-01-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical Engineering/Electromagnetics Methods for Electromagnetic Field Analysis A volume in the IEEE Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor . a gigantic platter of formulae of the dyadic kind.'--Akhlesh Lakhtaki, Professor, The Pennsylvania State University This monograph discusses mathematical and conceptual methods applicable in the analysis of electromagnetic fields and waves. Dyadic algebra is reviewed and armed with new identities it is applied throughout the book. The power of dyadic operations is seen when working with boundary, sheet and interface conditions, medium equations, field transformations, Greens functions, plane wave problems, vector circuit theory, multipole and image sources. Dyadic algebra offers convenience in handling problems involving chiral and bianisotropic media, of recent interest because of their wide range of potential applications. The final chapter gives, for the first time in book form, a unified presentation of EIT, the exact image theory, introduced by this author and colleagues. EIT is a general method for solving problems involving layered media by replacing them through image sources located in complex space. The main emphasis of the monograph is not on specific results but methods of analysis. The contents should be of interest to scientists doing research work in various fields of electromagnetics, as well as to graduate students. The addition of problems and answers in this reprint will enhance the teaching value of this work. Also in the series. Mathematical Foundations for Electromagnetic Theory Donald D. Dudley, University of Arizona, Tucson 1994 Hardcover 256 pp Methods for Electromagnetic Wave Propagation D. S. Jones, University of Dundee 1995 Hardcover 672 pp The Transmission Line Modeling Method: TLM Christos Christopoulos, University of Nottingham 1995 Hardcover 232 pp
Download or read book Electromagnetic Field Computation by Network Methods written by Leopold B. Felsen and published by Springer Science & Business Media. This book was released on 2009-03-05 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, the authors propose a systematic and rigorous treatment of electromagnetic field representations in complex structures. The architecture suggested in this book accommodates use of different numerical methods as well as alternative Green's function representations in each of the subdomains resulting from a partitioning of the overall problem. The subdomains are regions of space where electromagnetic energy is stored and are described in terms of equivalent circuit representations based either on lumped element circuits or on transmission lines. Connection networks connect the subcircuits representing the subdomains. The connection networks are lossless, don't store energy and represent the overall problem topology. This is similar to what is done in circuit theory and permits a phrasing of the solution of EM field problems in complex structures by Network-oriented methods.
Download or read book Methods for Electromagnetic Field Analysis written by Ismo V. Lindell and published by Oxford University Press, USA. This book was released on 1992 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph discusses mathematical and conceptual methods used in the analysis of electromagnetic fields and waves. Dyadic algebra is reviewed and armed with new identities to be applied throughout the book. The power of dyadic operations is seen when working with boundary, sheet, and interface conditions, medium equations, field transformations, Green functions, plane wave problems, vector circuit theory, multipole and image sources. Dyadic algebra allows convenience in handling problems involving chiral and bianisotropic media, of recent interest because of their wide range of potential applications. The final chapter gives, for the first time in book form, a unified presentation of EIT, the exact image theory, introduced by this author and colleagues. EIT is a general method for solving problems involving layered media by replacing them through image sources located in complex space. The main emphasis of the monograph is not on specific results but methods of analysis. The work will interest research-level electromagnetic physicists and engineers, and applied mathematicians.
Download or read book Analysis of Electromagnetic Fields and Waves written by Reinhold Pregla and published by Wiley Chichester. This book was released on 2008-05-19 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bragg gratings, meander lines, clystron resonators, photonic crystals), antennas (e.g. circular and conformal); and enables the reader to solve partial differential equations in other physical areas by using the described principles."--BOOK JACKET.
Download or read book Electric Field Analysis written by Sivaji Chakravorti and published by CRC Press. This book was released on 2017-12-19 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electric Field Analysis is both a student-friendly textbook and a valuable tool for engineers and physicists engaged in the design work of high-voltage insulation systems. The text begins by introducing the physical and mathematical fundamentals of electric fields, presenting problems from power and dielectric engineering to show how the theories are put into practice. The book then describes various techniques for electric field analysis and their significance in the validation of numerically computed results, as well as: Discusses finite difference, finite element, charge simulation, and surface charge simulation methods for the numerical computation of electric fields Provides case studies for electric field distribution in a cable termination, around a post insulator, in a condenser bushing, and around a gas-insulated substation (GIS) spacer Explores numerical field calculation for electric field optimization, demonstrating contour correction and examining the application of artificial neural networks Explains how high-voltage field optimization studies are carried out to meet the desired engineering needs Electric Field Analysis is accompanied by an easy-to-use yet comprehensive software for electric field computation. The software, along with a wealth of supporting content, is available for download with qualifying course adoption.
Download or read book Theory and Computation of Electromagnetic Fields written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-08-10 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.
Download or read book Modeling and Computations in Electromagnetics written by Habib Ammari and published by Springer Science & Business Media. This book was released on 2008-01-12 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is nothing less than an essential text in what is a new and growing discipline. Electromagnetic modeling and computations is expanding as a result of the steadily increasing demand for designing electrical devices, modeling electromagnetic materials, and simulating electromagnetic fields in nanoscale structures. The aim of this volume is to bring together prominent worldwide experts to review state-of-the-art developments and future trends of modeling and computations in electromagnetics.
Download or read book Electromagnetic Analysis and Design in Magnetic Resonance Imaging written by Jianming Jin and published by Routledge. This book was released on 2018-02-06 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive treatment of electromagnetic analysis and design of three critical devices for an MRI system - the magnet, gradient coils, and radiofrequency (RF) coils. Electromagnetic Analysis and Design in Magnetic Resonance Imaging is unique in its detailed examination of the analysis and design of the hardware for an MRI system. It takes an engineering perspective to serve the many scientists and engineers in this rapidly expanding field. Chapters present: an introduction to MRI basic concepts of electromagnetics, including Helmholtz and Maxwell coils, inductance calculation, and magnetic fields produced by special cylindrical and spherical surface currents principles for the analysis and design of gradient coils, including discrete wires and the target field method analysis of RF coils based on the equivalent lumped-circuit model as well as an analysis based on the integral equation formulation survey of special purpose RF coils analytical and numerical methods for the analysis of electromagnetic fields in biological objects With the continued, active development of MRI instrumentation, Electromagnetic Analysis and Design in Magnetic Resonance Imaging presents an excellent, logically organized text - an indispensable resource for engineers, physicists, and graduate students working in the field of MRI.
Download or read book Electromagnetic Field Theory for Engineers and Physicists written by Günther Lehner and published by Springer Science & Business Media. This book was released on 2010-02-05 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discussed is the electromagnetic field theory and its mathematical methods. Maxwell’s equations are presented and explained. It follows a detailed discussion of electrostatics, flux, magnetostatics, quasi stationary fields and electromagnetic fields. The author presents how to apply numerical methods like finite differences, finite elements, boundary elements, image charge methods, and Monte-Carlo methods to field theory problems. He offers an outlook on fundamental issues in physics including quantum mechanics. Some of these issues are still unanswered questions. A chapter dedicated to the theory of special relativity, which allows to simplify a number of field theory problems, complements this book. A book whose usefulness is not limited to engineering students, but can be very helpful for physicists and other branches of science.
Download or read book Numerical Methods in Electromagnetism written by M. V.K. Chari and published by Academic Press. This book was released on 2000 with total page 783 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagnetics is the foundation of our electric technology. It describes the fundamental principles upon which electricity is generated and used. This includes electric machines, high voltage transmission, telecommunication, radar, and recording and digital computing. Numerical Methods in Electromagnetism will serve both as an introductory text for graduate students and as a reference book for professional engineers and researchers. This book leads the uninitiated into the realm of numerical methods for solving electromagnetic field problems by examples and illustrations. Detailed descriptions of advanced techniques are also included for the benefit of working engineers and research students. Comprehensive descriptions of numerical methods In-depth introduction to finite differences, finite elements, and integral equations Illustrations and applications of linear and nonlinear solutions for multi-dimensional analysis Numerical examples to facilitate understanding of the methods Appendices for quick reference of mathematical and numerical methods employed
Download or read book Analytical and Computational Methods in Electromagnetics written by Ramesh Garg and published by Artech House. This book was released on 2008 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Achieve optimal microwave system performance by mastering the principles and methods underlying today's powerful computational tools and commercial software in electromagnetics. This authoritative resource offers you clear and complete explanation of this essential electromagnetics knowledge, providing you with the analytical background you need to understand such key approaches as MoM (method of moments), FDTD (Finite Difference Time Domain) and FEM (Finite Element Method), and Green's functions. This comprehensive book includes all math necessary to master the material. Moreover, it features numerous solved problems that help ensure your understanding of key concepts throughout the book.
Download or read book Multigrid Finite Element Methods for Electromagnetic Field Modeling written by Yu Zhu and published by John Wiley & Sons. This book was released on 2006-03-10 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.
Download or read book Electromagnetic Modeling by Finite Element Methods written by João Pedro A. Bastos and published by CRC Press. This book was released on 2003-04-01 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the elect
Download or read book Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources written by Adrian Doicu and published by Academic Press. This book was released on 2000-07-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The discrete sources method is an efficient and powerful tool for solving a large class of boundary-value problems in scattering theory. A variety of numerical methods for discrete sources now exist. In this book, the authors unify these formulations in the context of the so-called discrete sources method. Comprehensive presentation of the discrete sources method Original theory - an extension of the conventional null-field method using discrete sources Practical examples that demonstrate the efficiency and flexibility of elaborated methods (scattering by particles with high aspect ratio, rough particles, nonaxisymmetric particles, multiple scattering) List of discrete sources programmes available via the Internet
Download or read book The Finite Element Method in Electromagnetics written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-02-18 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.
Download or read book Electromagnetic and Photonic Simulation for the Beginner Finite Difference Frequency Domain in MATLAB written by Raymond C. Rumpf and published by Artech House. This book was released on 2022-01-31 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.
Download or read book Finite Elements Electromagnetics and Design written by S.R.H. Hoole and published by Elsevier. This book was released on 1995-05-19 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced topics of research in field computation are explored in this publication. Contributions have been sourced from international experts, ensuring a comprehensive specialist perspective. A unity of style has been achieved by the editor, who has specifically inserted appropriate cross-references throughout the volume, plus a single collected set of references at the end. The book provides a multi-faceted overview of the power and effectiveness of computation techniques in engineering electromagnetics. In addition to examining recent and current developments, it is hoped that it will stimulate further research in the field.