EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Methods and Models in Neurophysics

Download or read book Methods and Models in Neurophysics written by Carson Chow and published by Elsevier. This book was released on 2005 with total page 876 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. E. Marder, Experimenting with theory -- 2. A. Borysuk and J. Rinzel, Understanding neuronal dynamics by geometrical dissection of minimal models -- 3. D. Terman, Geometry singular perturbation analysis of neuronal dynamics -- 4. G. Mato, Theory of neural synchrony -- 5. M. Shelley, Some useful numerical techniques for simulating integrate-and-fire networks -- 6. D. Golomb, Propagation of pulses in cortical networks: the single-spike approximation -- 7. M. Tsodyks, Activity-dependent transmission in neocortical synapses -- 8. H. Sompolinsky and J. White, Theory of large recurrent networks: from spikes to behavior -- 9. C. van Vreeswijk, Irregular activity in large networks of neurons -- 10. N. Brunel, Network models of memory -- 11. P. Bressloff, Pattern formation in visual cortex -- 12. F. Wolf, Symmetry breaking and pattern selection in visual cortical development -- 13. A. Treves and Y. Roudi, On the evolution of the brain -- 14. E. Brown, Theory of point processes for neural syst ...

Book Methods in Neuronal Modeling

Download or read book Methods in Neuronal Modeling written by Christof Koch and published by MIT Press. This book was released on 1998 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kinetic Models of Synaptic Transmission / Alain Destexhe, Zachary F. Mainen, Terrence J. Sejnowski / - Cable Theory for Dendritic Neurons / Wilfrid Rall, Hagai Agmon-Snir / - Compartmental Models of Complex Neurons / Idan Segev, Robert E. Burke / - Multiple Channels and Calcium Dynamics / Walter M. Yamada, Christof Koch, Paul R. Adams / - Modeling Active Dendritic Processes in Pyramidal Neurons / Zachary F. Mainen, Terrence J. Sejnowski / - Calcium Dynamics in Large Neuronal Models / Erik De Schutter, Paul Smolen / - Analysis of Neural Excitability and Oscillations / John Rinzel, Bard Ermentrout / - Design and Fabrication of Analog VLSI Neurons / Rodney Douglas, Misha Mahowald / - Principles of Spike Train Analysis / Fabrizio Gabbiani, Christof Koch / - Modeling Small Networks / Larry Abbott, Eve Marder / - Spatial and Temporal Processing in Central Auditory Networks / Shihab Shamma / - Simulating Large Networks of Neurons / Alexander D. Protopapas, Michael Vanier, James M. Bower / ...

Book An Introduction to Model Based Cognitive Neuroscience

Download or read book An Introduction to Model Based Cognitive Neuroscience written by Birte U. Forstmann and published by Springer Nature. This book was released on with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Methods in Neuronal Modeling

Download or read book Methods in Neuronal Modeling written by Christof Koch and published by Bradford Book. This book was released on 1991 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stochastic Methods in Neuroscience

Download or read book Stochastic Methods in Neuroscience written by Carlo Laing and published by Oxford University Press. This book was released on 2010 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Great interest is now being shown in computational and mathematical neuroscience, fuelled in part by the rise in computing power, the ability to record large amounts of neurophysiological data, and advances in stochastic analysis. These techniques are leading to biophysically more realistic models. It has also become clear that both neuroscientists and mathematicians profit from collaborations in this exciting research area.Graduates and researchers in computational neuroscience and stochastic systems, and neuroscientists seeking to learn more about recent advances in the modelling and analysis of noisy neural systems, will benefit from this comprehensive overview. The series of self-contained chapters, each written by experts in their field, covers key topics such as: Markov chain models for ion channel release; stochastically forced single neurons and populations of neurons; statistical methods for parameterestimation; and the numerical approximation of these stochastic models.Each chapter gives an overview of a particular topic, including its history, important results in the area, and future challenges, and the text comes complete with a jargon-busting index of acronyms to allow readers to familiarize themselves with the language used.

Book In Vitro Neuronal Networks

Download or read book In Vitro Neuronal Networks written by Michela Chiappalone and published by Springer. This book was released on 2019-05-09 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the incredible advances achieved in the study of in vitro neuronal networks for use in basic and applied research. These cultures of dissociated neurons offer a perfect trade-off between complex experimental models and theoretical modeling approaches giving new opportunities for experimental design but also providing new challenges in data management and interpretation. Topics include culturing methodologies, neuroengineering techniques, stem cell derived neuronal networks, techniques for measuring network activity, and recent improvements in large-scale data analysis. The book ends with a series of case studies examining potential applications of these technologies.

Book Neuronal Dynamics

    Book Details:
  • Author : Wulfram Gerstner
  • Publisher : Cambridge University Press
  • Release : 2014-07-24
  • ISBN : 113999316X
  • Pages : 591 pages

Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: What happens in our brain when we make a decision? What triggers a neuron to send out a signal? What is the neural code? This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields of computational and theoretical neuroscience. It covers classical topics, including the Hodgkin–Huxley equations and Hopfield model, as well as modern developments in the field such as generalized linear models and decision theory. Concepts are introduced using clear step-by-step explanations suitable for readers with only a basic knowledge of differential equations and probabilities, and are richly illustrated by figures and worked-out examples. End-of-chapter summaries and classroom-tested exercises make the book ideal for courses or for self-study. The authors also give pointers to the literature and an extensive bibliography, which will prove invaluable to readers interested in further study.

Book Computational Neuroscience for Advancing Artificial Intelligence  Models  Methods and Applications

Download or read book Computational Neuroscience for Advancing Artificial Intelligence Models Methods and Applications written by Alonso, Eduardo and published by IGI Global. This book was released on 2010-11-30 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book argues that computational models in behavioral neuroscience must be taken with caution, and advocates for the study of mathematical models of existing theories as complementary to neuro-psychological models and computational models"--

Book Dynamical Systems in Neuroscience

Download or read book Dynamical Systems in Neuroscience written by Eugene M. Izhikevich and published by MIT Press. This book was released on 2010-01-22 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.

Book Principles of Computational Modelling in Neuroscience

Download or read book Principles of Computational Modelling in Neuroscience written by David Sterratt and published by Cambridge University Press. This book was released on 2011-06-30 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: The nervous system is made up of a large number of interacting elements. To understand how such a complex system functions requires the construction and analysis of computational models at many different levels. This book provides a step-by-step account of how to model the neuron and neural circuitry to understand the nervous system at all levels, from ion channels to networks. Starting with a simple model of the neuron as an electrical circuit, gradually more details are added to include the effects of neuronal morphology, synapses, ion channels and intracellular signalling. The principle of abstraction is explained through chapters on simplifying models, and how simplified models can be used in networks. This theme is continued in a final chapter on modelling the development of the nervous system. Requiring an elementary background in neuroscience and some high school mathematics, this textbook is an ideal basis for a course on computational neuroscience.

Book Advanced Data Analysis in Neuroscience

Download or read book Advanced Data Analysis in Neuroscience written by Daniel Durstewitz and published by Springer. This book was released on 2017-09-15 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering. Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanatory frameworks, but become powerful, quantitative data-analytical tools in themselves that enable researchers to look beyond the data surface and unravel underlying mechanisms. Interactive examples of most methods are provided through a package of MatLab routines, encouraging a playful approach to the subject, and providing readers with a better feel for the practical aspects of the methods covered. "Computational neuroscience is essential for integrating and providing a basis for understanding the myriads of remarkable laboratory data on nervous system functions. Daniel Durstewitz has excellently covered the breadth of computational neuroscience from statistical interpretations of data to biophysically based modeling of the neurobiological sources of those data. His presentation is clear, pedagogically sound, and readily useable by experts and beginners alike. It is a pleasure to recommend this very well crafted discussion to experimental neuroscientists as well as mathematically well versed Physicists. The book acts as a window to the issues, to the questions, and to the tools for finding the answers to interesting inquiries about brains and how they function." Henry D. I. Abarbanel Physics and Scripps Institution of Oceanography, University of California, San Diego “This book delivers a clear and thorough introduction to sophisticated analysis approaches useful in computational neuroscience. The models described and the examples provided will help readers develop critical intuitions into what the methods reveal about data. The overall approach of the book reflects the extensive experience Prof. Durstewitz has developed as a leading practitioner of computational neuroscience. “ Bruno B. Averbeck

Book Mathematical Foundations of Neuroscience

Download or read book Mathematical Foundations of Neuroscience written by G. Bard Ermentrout and published by Springer Science & Business Media. This book was released on 2010-07-08 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arising from several courses taught by the authors, this book provides a needed overview illustrating how dynamical systems and computational analysis have been used in understanding the types of models that come out of neuroscience.

Book Validating Neuro Computational Models of Neurological and Psychiatric Disorders

Download or read book Validating Neuro Computational Models of Neurological and Psychiatric Disorders written by Basabdatta Sen Bhattacharya and published by Springer. This book was released on 2015-10-30 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of articles by leading researchers working at the cutting edge of neuro-computational modelling of neurological and psychiatric disorders. Each article contains model validation techniques used in the context of the specific problem being studied. Validation is essential for neuro-inspired computational models to become useful tools in the understanding and treatment of disease conditions. Currently, the immense diversity in neuro-computational modelling approaches for investigating brain diseases has created the need for a structured and coordinated approach to benchmark and standardise validation methods and techniques in this field of research. This book serves as a step towards a systematic approach to validation of neuro-computational models used for studying brain diseases and should be useful for all neuro-computational modellers.

Book From Neuron to Cognition via Computational Neuroscience

Download or read book From Neuron to Cognition via Computational Neuroscience written by Michael A. Arbib and published by MIT Press. This book was released on 2016-11-04 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition. This textbook presents a wide range of subjects in neuroscience from a computational perspective. It offers a comprehensive, integrated introduction to core topics, using computational tools to trace a path from neurons and circuits to behavior and cognition. Moreover, the chapters show how computational neuroscience—methods for modeling the causal interactions underlying neural systems—complements empirical research in advancing the understanding of brain and behavior. The chapters—all by leaders in the field, and carefully integrated by the editors—cover such subjects as action and motor control; neuroplasticity, neuromodulation, and reinforcement learning; vision; and language—the core of human cognition. The book can be used for advanced undergraduate or graduate level courses. It presents all necessary background in neuroscience beyond basic facts about neurons and synapses and general ideas about the structure and function of the human brain. Students should be familiar with differential equations and probability theory, and be able to pick up the basics of programming in MATLAB and/or Python. Slides, exercises, and other ancillary materials are freely available online, and many of the models described in the chapters are documented in the brain operation database, BODB (which is also described in a book chapter). Contributors Michael A. Arbib, Joseph Ayers, James Bednar, Andrej Bicanski, James J. Bonaiuto, Nicolas Brunel, Jean-Marie Cabelguen, Carmen Canavier, Angelo Cangelosi, Richard P. Cooper, Carlos R. Cortes, Nathaniel Daw, Paul Dean, Peter Ford Dominey, Pierre Enel, Jean-Marc Fellous, Stefano Fusi, Wulfram Gerstner, Frank Grasso, Jacqueline A. Griego, Ziad M. Hafed, Michael E. Hasselmo, Auke Ijspeert, Stephanie Jones, Daniel Kersten, Jeremie Knuesel, Owen Lewis, William W. Lytton, Tomaso Poggio, John Porrill, Tony J. Prescott, John Rinzel, Edmund Rolls, Jonathan Rubin, Nicolas Schweighofer, Mohamed A. Sherif, Malle A. Tagamets, Paul F. M. J. Verschure, Nathan Vierling-Claasen, Xiao-Jing Wang, Christopher Williams, Ransom Winder, Alan L. Yuille

Book Theoretical Neuroscience

Download or read book Theoretical Neuroscience written by Peter Dayan and published by MIT Press. This book was released on 2005-08-12 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical neuroscience provides a quantitative basis for describing what nervous systems do, determining how they function, and uncovering the general principles by which they operate. This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory. The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.

Book Guide to Research Techniques in Neuroscience

Download or read book Guide to Research Techniques in Neuroscience written by Matt Carter and published by Academic Press. This book was released on 2022-03-26 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern neuroscience research is inherently multidisciplinary, with a wide variety of cutting edge new techniques to explore multiple levels of investigation. This Third Edition of Guide to Research Techniques in Neuroscience provides a comprehensive overview of classical and cutting edge methods including their utility, limitations, and how data are presented in the literature. This book can be used as an introduction to neuroscience techniques for anyone new to the field or as a reference for any neuroscientist while reading papers or attending talks. - Nearly 200 updated full-color illustrations to clearly convey the theory and practice of neuroscience methods - Expands on techniques from previous editions and covers many new techniques including in vivo calcium imaging, fiber photometry, RNA-Seq, brain spheroids, CRISPR-Cas9 genome editing, and more - Clear, straightforward explanations of each technique for anyone new to the field - A broad scope of methods, from noninvasive brain imaging in human subjects, to electrophysiology in animal models, to recombinant DNA technology in test tubes, to transfection of neurons in cell culture - Detailed recommendations on where to find protocols and other resources for specific techniques - "Walk-through" boxes that guide readers through experiments step-by-step

Book Current Laboratory Methods in Neuroscience Research

Download or read book Current Laboratory Methods in Neuroscience Research written by Huangui Xiong and published by Springer. This book was released on 2016-08-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current Laboratory Methods in Neuroscience Research is a research manual for both students and seasoned researchers. It focuses on commonly-used techniques employed in neuroscience research, presented in a simple, step-by-step manner for laboratory use. The manual also offers a “blueprint” for bench-to-bedside research designed to facilitate multidisciplinary neuroscience pursuits. Sections include coverage of neurohistological techniques, in vitro preparations, leukocyte isolation and application in neuroscience, standard laboratory nucleic acid and protein detections, nanomedicine, bioimaging, neuroelectrophysiology, immunohistochemistry and autoradiography, analysis of gene expression, and animal models.