EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Method of Lines PDE Analysis in Biomedical Science and Engineering

Download or read book Method of Lines PDE Analysis in Biomedical Science and Engineering written by William E. Schiesser and published by John Wiley & Sons. This book was released on 2016-04-18 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the methodology and applications of ODE and PDE models within biomedical science and engineering With an emphasis on the method of lines (MOL) for partial differential equation (PDE) numerical integration, Method of Lines PDE Analysis in Biomedical Science and Engineering demonstrates the use of numerical methods for the computer solution of PDEs as applied to biomedical science and engineering (BMSE). Written by a well-known researcher in the field, the book provides an introduction to basic numerical methods for initial/boundary value PDEs before moving on to specific BMSE applications of PDEs. Featuring a straightforward approach, the book’s chapters follow a consistent and comprehensive format. First, each chapter begins by presenting the model as an ordinary differential equation (ODE)/PDE system, including the initial and boundary conditions. Next, the programming of the model equations is introduced through a series of R routines that primarily implement MOL for PDEs. Subsequently, the resulting numerical and graphical solution is discussed and interpreted with respect to the model equations. Finally, each chapter concludes with a review of the numerical algorithm performance, general observations and results, and possible extensions of the model. Method of Lines PDE Analysis in Biomedical Science and Engineering also includes: Examples of MOL analysis of PDEs, including BMSE applications in wave front resolution in chromatography, VEGF angiogenesis, thermographic tumor location, blood-tissue transport, two fluid and membrane mass transfer, artificial liver support system, cross diffusion epidemiology, oncolytic virotherapy, tumor cell density in glioblastomas, and variable grids Discussions on the use of R software, which facilitates immediate solutions to differential equation problems without having to first learn the basic concepts of numerical analysis for PDEs and the programming of PDE algorithms A companion website that provides source code for the R routines Method of Lines PDE Analysis in Biomedical Science and Engineering is an introductory reference for researchers, scientists, clinicians, medical researchers, mathematicians, statisticians, chemical engineers, epidemiologists, and pharmacokineticists as well as anyone interested in clinical applications and the interpretation of experimental data with differential equation models. The book is also an ideal textbook for graduate-level courses in applied mathematics, BMSE, biology, biophysics, biochemistry, medicine, and engineering.

Book Time Delay ODE PDE Models

Download or read book Time Delay ODE PDE Models written by W.E. Schiesser and published by CRC Press. This book was released on 2019-11-25 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time delayed (lagged) variables are an inherent feature of biological/physiological systems. For example, infection from a disease may at first be asymptomatic, and only after a delay is the infection apparent so that treatment can begin.Thus, to adequately describe physiological systems, time delays are frequently required and must be included in the equations of mathematical models. The intent of this book is to present a methodology for the formulation and computer implementation of mathematical models based on time delay ordinary differential equations (DODEs) and partial differential equations (DPDEs). The DODE/DPDE methodology is presented through a series of example applications, particularly in biomedical science and engineering (BMSE). The computer-based implementation of the example models is explained with routines coded (programmed) in R, a quality, open-source scientific computing system that is readily available from the Internet. Formal mathematics is minimized, e.g., no theorems and proofs. Rather, the presentation is through detailed examples that the reader/researcher/analyst can execute on modest computers. The DPDE analysis is based on the method of lines (MOL), an established general algorithm for PDEs, implemented with finite differences. The example applications can first be executed to confirm the reported solutions, then extended by variation of the parameters and the equation terms, and even the forumulation and use of alternative DODE/DPDE models. • Introduces time delay ordinary and partial differential equations (DODE/DPDEs) and their numerical computer-based integration (solution) • Illustrates the computer implementation of DODE/DPDE models with coding (programming) in R, a quality, open-source scientific programming system readily available from the Internet • Applies DODE/DPDE models to biological/physiological systems through a series of examples • Provides the R routines for all of the illustrative applications through a download link • Facilitates the use of the models with reasonable time and effort on modest computers

Book A Compendium of Partial Differential Equation Models

Download or read book A Compendium of Partial Differential Equation Models written by William E. Schiesser and published by Cambridge University Press. This book was released on 2009-03-16 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical methods and computer code in Matlab for the solution of ODEs and PDEs with detailed line-by-line discussion.

Book Differential Equation Analysis in Biomedical Science and Engineering

Download or read book Differential Equation Analysis in Biomedical Science and Engineering written by William E. Schiesser and published by John Wiley & Sons. This book was released on 2014-03-31 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the computed numerical solutions and is a valuable resource for dealing with a broad class of linear and nonlinear partial differential equations. The author’s primary focus is on models expressed as systems of PDEs, which generally result from including spatial effects so that the PDE dependent variables are functions of both space and time, unlike ordinary differential equation (ODE) systems that pertain to time only. As such, the book emphasizes details of the numerical algorithms and how the solutions were computed. Featuring computer-based mathematical models for solving real-world problems in the biological and biomedical sciences and engineering, the book also includes: R routines to facilitate the immediate use of computation for solving differential equation problems without having to first learn the basic concepts of numerical analysis and programming for PDEs Models as systems of PDEs and associated initial and boundary conditions with explanations of the associated chemistry, physics, biology, and physiology Numerical solutions of the presented model equations with a discussion of the important features of the solutions Aspects of general PDE computation through various biomedical science and engineering applications Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R is an excellent reference for researchers, scientists, clinicians, medical researchers, engineers, statisticians, epidemiologists, and pharmacokineticists who are interested in both clinical applications and interpretation of experimental data with mathematical models in order to efficiently solve the associated differential equations. The book is also useful as a textbook for graduate-level courses in mathematics, biomedical science and engineering, biology, biophysics, biochemistry, medicine, and engineering.

Book Time Delay ODE PDE Models

Download or read book Time Delay ODE PDE Models written by W.E. Schiesser and published by CRC Press. This book was released on 2019-11-25 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time delayed (lagged) variables are an inherent feature of biological/physiological systems. For example, infection from a disease may at first be asymptomatic, and only after a delay is the infection apparent so that treatment can begin. Thus, to adequately describe physiological systems, time delays are frequently required and must be included in the equations of mathematical models. The intent of this book is to present a methodology for the formulation and computer implementation of mathematical models based on time delay ordinary differential equations (DODEs) and partial differential equations (DPDEs). The DODE/DPDE methodology is presented through a series of example applications, particularly in biomedical science and engineering (BMSE). The computer-based implementation of the example models is explained with routines coded (programmed) in R, a quality, open-source scientific computing system that is readily available from the Internet. Formal mathematics is minimized, for example, no theorems and proofs. Rather, the presentation is through detailed examples that the reader/researcher/analyst can execute on modest computers. The DPDE analysis is based on the method of lines (MOL), an established general algorithm for PDEs, implemented with finite differences. The example applications can first be executed to confirm the reported solutions, then extended by variation of the parameters and the equation terms, and even the formulation and use of alternative DODE/DPDE models.

Book Partial Differential Equation Analysis in Biomedical Engineering

Download or read book Partial Differential Equation Analysis in Biomedical Engineering written by W. E. Schiesser and published by Cambridge University Press. This book was released on 2013 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gives graduate students and researchers an introductory overview of partial differential equation analysis of biomedical engineering systems through detailed examples.

Book ODE PDE Analysis of Multiple Myeloma

Download or read book ODE PDE Analysis of Multiple Myeloma written by William E. Schiesser and published by CRC Press. This book was released on 2020-05-28 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiple myeloma is a form of bone cancer. Specifically, it is a cancer of the plasma cells found in bone marrow (bone soft tissue). Normal plasma cells are an important part of the immune system. Mathematical models for multiple myeloma based on ordinary and partial differential equations (ODE/PDEs) are presented in this book, starting with a basic ODE model in Chapter 1, and concluding with a detailed ODE/PDE model in Chapter 4 that gives the spatiotemporal distribution of four dependent variable components in the bone marrow and peripheral blood: (1) protein produced by multiple myeloma cells, termed the M protein, (2) cytotoxic T lymphocytes (CTLs), (3) natural killer (NK) cells, and (4) regulatory T cells (Tregs). The computer-based implementation of the example models is presented through routines coded (programmed) in R, a quality, open-source scientific computing system that is readily available from the Internet. Formal mathematics is minimized, e.g., no theorems and proofs. Rather, the presentation is through detailed examples that the reader/researcher/analyst can execute on modest computers using the R routines that are available through a download. The PDE analysis is based on the method of lines (MOL), an established general algorithm for PDEs, implemented with finite differences.

Book Numerical Modeling of COVID 19 Neurological Effects

Download or read book Numerical Modeling of COVID 19 Neurological Effects written by William Schiesser and published by CRC Press. This book was released on 2021-12-26 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covid-19 is primarily a respiratory disease which results in impaired oxygenation of blood. The O2-deficient blood then moves through the body, and for the study in this book, the focus is on the blood flowing to the brain. The dynamics of blood flow along the brain capillaries and tissue is modeled as systems of ordinary and partial differential equations (ODE/PDEs). The ODE/PDE methodology is presented through a series of examples, 1. A basic one PDE model for O2 concentration in the brain capillary blood. 2. A two PDE model for O2 concentration in the brain capillary blood and in the brain tissue, with O2 transport across the blood brain barrier (BBB). 3. The two model extended to three PDEs to include the brain functional neuron cell density. Cognitive impairment could result from reduced neuron cell density in time and space (in the brain) that follows from lowered O2 concentration (hypoxia). The computer-based implementation of the example models is presented through routines coded (programmed) in R, a quality, open-source scientific computing system that is readily available from the Internet. Formal mathematics is minimized, e.g., no theorems and proofs. Rather, the presentation is through detailed examples that the reader/researcher/analyst can execute on modest computers. The PDE analysis is based on the method of lines (MOL), an established general algorithm for PDEs, implemented with finite differences. The routines are available from a download link so that the example models can be executed without having to first study numerical methods and computer coding. The routines can then be applied to variations and extensions of the blood/brain hypoxia models, such as changes in the ODE/PDE parameters (constants) and form of the model equations.

Book Nonlinear Higher Order Differential And Integral Coupled Systems  Impulsive And Integral Equations On Bounded And Unbounded Domains

Download or read book Nonlinear Higher Order Differential And Integral Coupled Systems Impulsive And Integral Equations On Bounded And Unbounded Domains written by Feliz Manuel Minhos and published by World Scientific. This book was released on 2022-04-11 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boundary value problems on bounded or unbounded intervals, involving two or more coupled systems of nonlinear differential and integral equations with full nonlinearities, are scarce in the literature. The present work by the authors desires to fill this gap. The systems covered here include differential and integral equations of Hammerstein-type with boundary constraints, on bounded or unbounded intervals. These are presented in several forms and conditions (three points, mixed, with functional dependence, homoclinic and heteroclinic, amongst others). This would be the first time that differential and integral coupled systems are studied systematically. The existence, and in some cases, the localization of the solutions are carried out in Banach space, following several types of arguments and approaches such as Schauder's fixed-point theorem or Guo-Krasnosel'ski? fixed-point theorem in cones, allied to Green's function or its estimates, lower and upper solutions, convenient truncatures, the Nagumo condition presented in different forms, the concept of equiconvergence, Carathéodory functions, and sequences. Moreover, the final part in the volume features some techniques on how to relate differential coupled systems to integral ones, which require less regularity. Parallel to the theoretical explanation of this work, there is a range of practical examples and applications involving real phenomena, focusing on physics, mechanics, biology, forestry, and dynamical systems, which researchers and students will find useful.

Book Introduction to Numerical Methods for Variational Problems

Download or read book Introduction to Numerical Methods for Variational Problems written by Hans Petter Langtangen and published by Springer Nature. This book was released on 2019-09-26 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook teaches finite element methods from a computational point of view. It focuses on how to develop flexible computer programs with Python, a programming language in which a combination of symbolic and numerical tools is used to achieve an explicit and practical derivation of finite element algorithms. The finite element library FEniCS is used throughout the book, but the content is provided in sufficient detail to ensure that students with less mathematical background or mixed programming-language experience will equally benefit. All program examples are available on the Internet.

Book Spline Collocation Methods for Partial Differential Equations

Download or read book Spline Collocation Methods for Partial Differential Equations written by William E. Schiesser and published by John Wiley & Sons. This book was released on 2017-05-22 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive approach to numerical partial differential equations Spline Collocation Methods for Partial Differential Equations combines the collocation analysis of partial differential equations (PDEs) with the method of lines (MOL) in order to simplify the solution process. Using a series of example applications, the author delineates the main features of the approach in detail, including an established mathematical framework. The book also clearly demonstrates that spline collocation can offer a comprehensive method for numerical integration of PDEs when it is used with the MOL in which spatial (boundary value) derivatives are approximated with splines, including the boundary conditions. R, an open-source scientific programming system, is used throughout for programming the PDEs and numerical algorithms, and each section of code is clearly explained. As a result, readers gain a complete picture of the model and its computer implementation without having to fill in the details of the numerical analysis, algorithms, or programming. The presentation is not heavily mathematical, and in place of theorems and proofs, detailed example applications are provided. Appropriate for scientists, engineers, and applied mathematicians, Spline Collocation Methods for Partial Differential Equations: Introduces numerical methods by first presenting basic examples followed by more complicated applications Employs R to illustrate accurate and efficient solutions of the PDE models Presents spline collocation as a comprehensive approach to the numerical integration of PDEs and an effective alternative to other, well established methods Discusses how to reproduce and extend the presented numerical solutions Identifies the use of selected algorithms, such as the solution of nonlinear equations and banded or sparse matrix processing Features a companion website that provides the related R routines Spline Collocation Methods for Partial Differential Equations is a valuable reference and/or self-study guide for academics, researchers, and practitioners in applied mathematics and engineering, as well as for advanced undergraduates and graduate-level students.

Book Numerical Methods for Partial Differential Equations

Download or read book Numerical Methods for Partial Differential Equations written by Sandip Mazumder and published by Academic Press. This book was released on 2015-12-01 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives

Book Solving PDEs in Python

    Book Details:
  • Author : Hans Petter Langtangen
  • Publisher : Springer
  • Release : 2017-03-21
  • ISBN : 3319524623
  • Pages : 152 pages

Download or read book Solving PDEs in Python written by Hans Petter Langtangen and published by Springer. This book was released on 2017-03-21 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.

Book Scaling of Differential Equations

Download or read book Scaling of Differential Equations written by Hans Petter Langtangen and published by Springer. This book was released on 2016-06-15 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and example-driven. The first part on ODEs fits even a lower undergraduate level, while the most advanced multiphysics fluid mechanics examples target the graduate level. The scientific literature is full of scaled models, but in most of the cases, the scales are just stated without thorough mathematical reasoning. This book explains how the scales are found mathematically. This book will be a valuable read for anyone doing numerical simulations based on ordinary or partial differential equations.

Book Finite Difference Computing with PDEs

Download or read book Finite Difference Computing with PDEs written by Hans Petter Langtangen and published by Springer. This book was released on 2017-06-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Book Spatiotemporal Modeling of Influenza

Download or read book Spatiotemporal Modeling of Influenza written by William E. Schiesser and published by Springer Nature. This book was released on 2022-05-31 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has a two-fold purpose: (1) An introduction to the computer-based modeling of influenza, a continuing major worldwide communicable disease. (2) The use of (1) as an illustration of a methodology for the computer-based modeling of communicable diseases. For the purposes of (1) and (2), a basic influenza model is formulated as a system of partial differential equations (PDEs) that define the spatiotemporal evolution of four populations: susceptibles, untreated and treated infecteds, and recovereds. The requirements of a well-posed PDE model are considered, including the initial and boundary conditions. The terms of the PDEs are explained. The computer implementation of the model is illustrated with a detailed line-by-line explanation of a system of routines in R (a quality, open-source scientific computing system that is readily available from the Internet). The R routines demonstrate the straightforward numerical solution of a system of nonlinear PDEs by the method of lines (MOL), an established general algorithm for PDEs. The presentation of the PDE modeling methodology is introductory with a minumum of formal mathematics (no theorems and proofs), and with emphasis on example applications. The intent of the book is to assist in the initial understanding and use of PDE mathematical modeling of communicable diseases, and the explanation and interpretation of the computed model solutions, as illustrated with the influenza model.

Book Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Download or read book Certified Reduced Basis Methods for Parametrized Partial Differential Equations written by Jan S Hesthaven and published by Springer. This book was released on 2015-08-20 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.