EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Metallization of Silicon Solar Cells with Passivating Contacts

Download or read book Metallization of Silicon Solar Cells with Passivating Contacts written by Jörg Schube and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Solar Cell Metallization and Module Technology

Download or read book Silicon Solar Cell Metallization and Module Technology written by Thorsten Dullweber and published by IET. This book was released on 2021-12-13 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metallization is a key step in manufacturing of efficient and reliable solar cells. Written by world-wide renowned experts, this work covers metallization technologies, before describing ongoing R&D activities for the most relevant silicon solar cells metallization technologies. Later chapters deal with aspects of solar cell modules.

Book Silicon Heterojunction Solar Cells

Download or read book Silicon Heterojunction Solar Cells written by W.R. Fahrner and published by Trans Tech Publications Ltd. This book was released on 2006-08-15 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.

Book Review on Metallization in Crystalline Silicon Solar Cells

Download or read book Review on Metallization in Crystalline Silicon Solar Cells written by S. Saravanan and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cell market is led by silicon photovoltaics and holds around 92% of the total market. Silicon solar cell fabrication process involves several critical steps which affects cell efficiency to large extent. This includes surface texturization, diffusion, antireflective coatings, and contact metallization. Among the critical processes, metallization is more significant. By optimizing contact metallization, electrical and optical losses of the solar cells can be reduced or controlled. Conventional and advanced silicon solar cell processes are discussed briefly. Subsequently, different metallization technologies used for front contacts in conventional silicon solar cells such as screen printing and nickel/copper plating are reviewed in detail. Rear metallization is important to improve efficiency in passivated emitter rear contact cells and interdigitated back contact cells. Current models on local Al contact formation in passivated emitter rear contact (PERC) cells are reviewed, and the influence of process parameters on the formation of local Al contacts is discussed. Also, the contact mechanism and the influence of metal contacts in interdigitated back contact (IBC) cells are reviewed briefly. The research highlights on metallization of conventional screen printed solar cells are compared with PERC and IBC cells.

Book High Efficiency Silicon Solar Cells

Download or read book High Efficiency Silicon Solar Cells written by Martin A. Green and published by Trans Tech Publications Ltd. This book was released on 1987-01-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The early chapters comprehensively review the optical and transport properties of silicon. Light trapping is described in detail. Limits on the efficiency of silicon cells are discussed as well as material requirements necessary to approach these limits. The status of current approaches to passifying surfaces, contacts and bulk regions is reviewed. The final section of the book describes the most practical approaches to the fabrication of high-efficiency cells capable of meeting the efficiency targets for both concentrated and non-concentrated sunlight, including a discussion of design and processing approaches for non-crystalline silicon.

Book Proceedings of the 10th Workshop on Metallization and Interconnection for Crystalline Silicon Solar Cells

Download or read book Proceedings of the 10th Workshop on Metallization and Interconnection for Crystalline Silicon Solar Cells written by Loic Tous and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 10th Workshop on Metallization & Interconnection for Crystalline Silicon Solar Cells took place on November 15-16th 2021 in Genk (Belgium) and continues a series of events that started in 2008 in Utrecht, the Netherlands as a forum for metallization specialists. The workshop focuses on latest status, trends, and new directions in the field of metallization and interconnection for crystalline silicon (c-Si) solar cells. Specific topical areas include understanding of screen-printing contacts, advanced printing, passivating contacts, plated contacts, characterization/modelling, advanced interconnection schemes, and reliability for c-Si technology.

Book Double Sided Passivated Contacts for Solar Cell Applications

Download or read book Double Sided Passivated Contacts for Solar Cell Applications written by Zhi Peng Ling and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tunnel layer passivated contacts have been successfully demonstrated for next-generation silicon solar cell concepts, achieving improved device performance stemming from the significantly reduced contact recombination of the solar cell contacts. However, these carrier-selective passivated contacts are currently deployed only at the rear side of the silicon solar cell, while the front side adopts a conventional diffused junction and contacting scheme. In this work, we report on the novelty and feasibility of deploying tunnel layer passivated contacts on both sides of a silicon wafer-based solar cell, featuring a textured front surface and a planar rear surface. In particular, we demonstrate that silicon solar cells incorporating our in-house developed electron-selective thermal-SiOx/poly-Si(n+) and hole-selective thermal-SiOx/poly-Si(p+) passivated contacts have a solar cell efficiency potential approaching 24%. Deploying contact passivation only at the rear side of the solar cell, we have reached a solar cell efficiency of 21.7%, using conventional screen printing for metallization. We present a systematic approach of evaluating our in-house developed electron-selective and hole-selective passivated contacts on both textured and planar lifetime test structures, as well as dark I,ÄìV test structures, to extract the recombination current density j0 and the contact resistance Rc of the passivated contact, which is used for process optimization as well as for subsequent efficiency potential prediction. The two key challenges aiming at a double-sided integration of passivated contacts are (1) parasitic absorption within the front-side highly doped poly-Si capping layer, requiring the processing of ultrathin (,â§10-nm) contact passivation layers. This has been quantified by numerical simulation (using SunSolve,Ѣ) and also solved experimentally, i.e., processing ultrathin 3-/10-nm hole/electron extracting SiOx/poly-Si(p+/n+) passivated contact layers, reaching an implied open-circuit voltage of 690/703¬†mV on a planar/textured silicon surface, which will even further enhance after SiNx capping. (2) Ensuring process compatibility with conventional screen printing: Screen printing on electron extracting poly-Si(n+) seems feasible; however, screen printing on hole-extracting poly-Si(p+) is still a challenge. Solar cell precursors have been processed, showing excellent pre-metallization results (implied-VOC ,ào 713¬†mV). According to our efficiency potential prediction (using the measured j0 and Rc values of our developed contact passivation layers), bifacial double-sided passivated contact solar cells (efficiency potential of ,ào23.2%, using our layers) can clearly outperform rear-side-only passivated contact solar cells (efficiency potential of ,ào22.5%).

Book Electrochemical Processes for Metallization of Novel Silicon Solar Cells

Download or read book Electrochemical Processes for Metallization of Novel Silicon Solar Cells written by Mathias Kamp and published by Fraunhofer Verlag. This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within this work electrochemical processes for manufacturing of novel silicon solar cells are investigated. Direct plating of Ni and Al on n- and p- silicon is demonstrated by making use of solar cell characteristics. Homogenous Ni/Cu stacks are realized for bifacial and back contact solar cells, forming an excellent mechanical and electrical contact to silicon. For metallization of HIT solar cells, the plating behavior on ITO layers is studied. Additionally, plating processes on evaporated Al layers are developed and applied to back contact solar cells. By means of process optimization the plated metal stack on Al features sufficient adhesion and increases the lateral conductivity of the metal grid resulting in increased solar cell efficiency. An advanced metallization route for back contact solar cells which purposefully utilizes the different characteristics of the deposited metals (Al, Ni, Cu) is developed. The resulting metal stacks are characterized in detail using SEM, EDX and AES methods. Besides plating processes, local oxidizing processes for Al are established and combined with printing technologies to realize the metal contact separation for back contact solar cells.

Book Photovoltaic Solar Energy

Download or read book Photovoltaic Solar Energy written by Angèle Reinders and published by John Wiley & Sons. This book was released on 2017-02-06 with total page 755 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date account of existing PV technologies in conjunction with an assessment of technological developments. Key features: Written by leading specialists active in concurrent developments in material sciences, solar cell research and application-driven R&D. Provides a basic knowledge base in light, photons and solar irradiance and basic functional principles of PV. Covers characterization techniques, economics and applications of PV such as silicon, thin-film and hybrid solar cells. Presents a compendium of PV technologies including: crystalline silicon technologies; chalcogenide thin film solar cells; thin-film silicon based PV technologies; organic PV and III-Vs; PV concentrator technologies; space technologies and economics, life-cycle and user aspects of PV technologies. Each chapter presents basic principles and formulas as well as major technological developments in a contemporary context with a look at future developments in this rapidly changing field of science and engineering. Ideal for industrial engineers and scientists beginning careers in PV as well as graduate students undertaking PV research and high-level undergraduate students.

Book Hybrid Perovskite Solar Cells

Download or read book Hybrid Perovskite Solar Cells written by Hiroyuki Fujiwara and published by John Wiley & Sons. This book was released on 2022-01-10 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unparalleled coverage of the most vibrant research field in photovoltaics! Hybrid perovskites, revolutionary game-changing semiconductor materials, have every favorable optoelectronic characteristic necessary for realizing high efficiency solar cells. The remarkable features of hybrid perovskite photovoltaics, such as superior material properties, easy material fabrication by solution-based processing, large-area device fabrication by an inkjet technology, and simple solar cell structures, have brought enormous attentions, leading to a rapid development of the solar cell technology at a pace never before seen in solar cell history. Hybrid Perovskite Solar Cells: Characteristics and Operation covers extensive topics of hybrid perovskite solar cells, providing easy-to-read descriptions for the fundamental characteristics of unique hybrid perovskite materials (Part I) as well as the principles and applications of hybrid perovskite solar cells (Part II). Both basic and advanced concepts of hybrid perovskite devices are treated thoroughly in this book; in particular, explanatory descriptions for general physical and chemical aspects of hybrid perovskite photovoltaics are included to provide fundamental understanding. This comprehensive book is highly suitable for graduate school students and researchers who are not familiar with hybrid perovskite materials and devices, allowing the accumulation of the accurate knowledge from the basic to the advanced levels.

Book Surface Passivation of Industrial Crystalline Silicon Solar Cells

Download or read book Surface Passivation of Industrial Crystalline Silicon Solar Cells written by Joachim John and published by Institution of Engineering and Technology. This book was released on 2018-11-15 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface passivation of silicon solar cells describes a technology for preventing electrons and holes to recombine prematurely with one another on the wafer surface. It increases the cell's energy conversion efficiencies and thus reduces the cost per kWh generated by a PV system.

Book Green Energy

    Book Details:
  • Author : Suman Lata Tripathi
  • Publisher : John Wiley & Sons
  • Release : 2021-02-17
  • ISBN : 1119760763
  • Pages : 640 pages

Download or read book Green Energy written by Suman Lata Tripathi and published by John Wiley & Sons. This book was released on 2021-02-17 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like most industries around the world, the energy industry has also made, and continues to make, a long march toward “green” energy. The science has come a long way since the 1970s, and renewable energy and other green technologies are becoming more and more common, replacing fossil fuels. It is, however, still a struggle, both in terms of energy sources keeping up with demand, and the development of useful technologies in this area. To maintain the supply for electrical energy, researchers, engineers and other professionals in industry are continuously exploring new eco-friendly energy technologies and power electronics, such as solar, wind, tidal, wave, bioenergy, and fuel cells. These technologies have changed the concepts of thermal, hydro and nuclear energy resources by the adaption of power electronics advancement and revolutionary development in lower manufacturing cost for semiconductors with long time reliability. The latest developments in renewable resources have proved their potential to boost the economy of any country. Green energy technology has not only proved the concept of clean energy but also reduces the dependencies on fossil fuel for electricity generation through smart power electronics integration. Also, endless resources have more potential to cope with the requirements of smart building and smart city concepts. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.

Book Physics of Solar Cells

    Book Details:
  • Author : Peter Würfel
  • Publisher : John Wiley & Sons
  • Release : 2008-07-11
  • ISBN : 3527618554
  • Pages : 198 pages

Download or read book Physics of Solar Cells written by Peter Würfel and published by John Wiley & Sons. This book was released on 2008-07-11 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Peter Würfel describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. Based on the highly successful German version, but thoroughly revised and updated, this edition contains the latest knowledge on the mechanisms of solar energy conversion. Requiring no more than standard physics knowledge, it enables readers to understand the factors driving conversion efficiency and to apply this knowledge to their own solar cell development.

Book Nanostructured Solar Cells

Download or read book Nanostructured Solar Cells written by Narottam Das and published by BoD – Books on Demand. This book was released on 2017-02-22 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured solar cells are very important in renewable energy sector as well as in environmental aspects, because it is environment friendly. The nano-grating structures (such as triangular or conical shaped) have a gradual change in refractive index which acts as a multilayer antireflective coating that is leading to reduced light reflection losses over broadband ranges of wavelength and angle of incidence. There are different types of losses in solar cells that always reduce the conversion efficiency, but the light reflection loss is the most important factor that decreases the conversion efficiency of solar cells significantly. The antireflective coating is an optical coating which is applied to the surface of lenses or any optical devices to reduce the light reflection losses. This coating assists for the light trapping capturing capacity or improves the efficiency of optical devices, such as lenses or solar cells. Hence, the multilayer antireflective coatings can reduce the light reflection losses and increases the conversion efficiency of nanostructured solar cells.

Book Improving the Performance and Durability of Metal Contacts in Crystalline Silicon Solar Cells Using Advanced Characterization

Download or read book Improving the Performance and Durability of Metal Contacts in Crystalline Silicon Solar Cells Using Advanced Characterization written by Nafis Iqbal and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar energy is one of the fastest growing forms of energy generation due to its low cost, lack of emissions, minimal maintenance, and excellent durability. However, like any other technology, it is also not free from defects and degradation, which limit its performance in the real world. Most of the degradation is related to metal contacts, which also happens to be one of the most expensive items in manufacturing, comprising almost half of the cost of converting a silicon wafer into a photovoltaic (PV) cell. Therefore, studying contact degradation to make them reliable and free of defects is the key to achieving high energy yields. High efficiency PV modules that are both cheap and reliable with an extended lifetime ultimately reduce the levelized cost of energy. This study aims to characterize contact degradation in solar cells to identify the root causes of performance losses and develop alternate solutions to metallization. Electrical and optical characterizations were performed on both accelerated aged and field exposed solar cells and modules to look for specific performance losses. Furthermore, materials characterization was performed on selected samples to understand the potential root causes and factors affecting the degradation. Unencapsulated solar cells mainly consisting of newer cell technologies and metallization were exposed to acetic acid to simulate field conditions and understand the effect on contact corrosion. Finally, a low-cost novel contact technology called the "transferred foil contact" was developed that can be used as the back contact of a highly efficient silicon heterojunction solar cell, to minimize recombination, and potentially combine cell metallization and interconnection. An overview of the solar energy history and current state-of-the-art is first discussed, followed by a chapter on solar cell device physics and contact technology. The following chapters discuss the different degradation mechanisms in terms of the process-structure-properties relationships of the PV materials. iii

Book Silicon Materials

Download or read book Silicon Materials written by Beddiaf Zaidi and published by BoD – Books on Demand. This book was released on 2019-08-07 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apart from oxygen, silicon is the most commonly occurring element on Earth. Silicon materials have many applications in the manufacturing technology of microelectronic components, integrated circuits, and photovoltaic generators. Circuit complexity and higher degrees of integration of components require constant improvement and control of silicon's properties. This book provides information on silicon materials, their use, and their impact on the modern world economy.