Download or read book Mesoscopic Physics of Complex Materials written by T.S. Chow and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: A cross-disciplinary study of the physical properties of complex fluids, solids, and interfaces as a function of their mesoscopic structures, with empasis on nonequilibrium phenomena. The book introduces readers to the methods of non-equilibrium statistical mechanics as applied to complex materials, but always connects theories with experiments. It shows the underlying connections between topics as diverse as critical phenomena in colloidal dynamics, glassy state relaxation and deformation, reinforced polymer composites, molecular level mixing in nanocomposites, and rough surfaces and interfaces. At the same time, each chapter is designed to be independent from the others so that the book can serve as a reference work as well as a text. It is not designed to review all the recent work in mesoscopic physics, which spans many disciplines, but rather attempts to establish a general framework for understanding and developing new materials that can not be designed by the trial and error methods. A familiarity with the basics of statistical mechanics and condensed matter physics is assumed.
Download or read book Mesoscopic Physics and Electronics written by Tsuneya Ando and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir,cuits. Smaller fea ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system.
Download or read book Directions In Condensed Matter Physics Memorial Volume In Honor Of Shang keng Ma written by Geoffrey Grinstein and published by World Scientific. This book was released on 1986-08-01 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects several in-depth articles giving lucid discussions on new developments in statistical and condensed matter physics. Many, though not all, contributors had been in touch with the late S-K Ma. Written by some of the world's experts and originators of new ideas in the field, this book is a must for all researchers in theoretical physics. Most of the articles should be accessible to diligent graduate students and experienced readers will gain from the wealth of materials contained herein.
Download or read book Transport in Semiconductor Mesoscopic Devices written by David K. Ferry and published by IOP Publishing Limited. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation David K. Ferry introduces the physics and applications of transport in mesoscopic and nanoscale electronic systems and devices and expands on the behaviour of these novel devices the numerous effects not seen in bulk semiconductors. Including coverage of recent developments, and with a chapter on carbon-based nanoelectronics, this work will provide a good course text for advanced students or as a handy reference for researchers or those entering this interdisciplinary area.
Download or read book Fundamentals of Condensed Matter and Crystalline Physics written by David L. Sidebottom and published by Cambridge University Press. This book was released on 2012-07-05 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook merges traditional solid state physics with contemporary condensed matter physics, providing an up-to-date introduction to the major concepts that form the foundations of condensed materials. The main foundational principles are emphasized, providing students with the knowledge beginners in the field should understand. The book is structured in four parts and allows students to appreciate how the concepts in this broad area build upon each other to produce a cohesive whole as they work through the chapters. Illustrations work closely with the text to convey concepts and ideas visually, enhancing student understanding of difficult material, and end-of-chapter exercises varying in difficulty allow students to put into practice the theory they have covered in each chapter and reinforce new concepts.
Download or read book Quantum Transport in Mesoscopic Systems written by David Sánchez and published by MDPI. This book was released on 2021-01-06 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.
Download or read book Nonlinear Mesoscopic Elasticity written by Robert A. Guyer and published by John Wiley & Sons. This book was released on 2009-09-28 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook brings together a great deal of new data on the static and dynamic elastic properties of granular and other composite material. The authors are at the very center of today's research and present new and imported theoretical tools that have enabled our current understanding of the complex behavior of rocks. There are three central themes running throughout the presentation: · Rocks as the prototypical material for defining a class of materials · The PM space model as a useful theoretical construct for developing a phenomenology · A sequence of refined analysis methods. This suite of new methods for both recording and analyzing data is more than a single framework for interpretation, it is also a toolbox for the experimenter. A comprehensive and systematic book of utmost interest to anybody involved in non-destructive testing, civil engineering, and geophysics.
Download or read book Clusters and Small Particles written by Boris M. Smirnov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Not merely a discussion of small particles or clusters of atoms, molecules, but also the systems they constitute. The goal is to analyse the properties of such finite aggregates and their behaviour in gases and plasmas, and to investigate processes that involve such clusters, based on lectures and seminar problems for graduates. The main part of the book includes more than 200 problems, covering collisions, charge transfer, chemical reactions, condensed systems and their structures, kinetics of cluster growth, excited clusters, the transition from clusters to bulk particles, and small particles, dust, and aerosols in plasmas. Reference data for corresponding parameters of systems under consideration is given in the appendices. Of interest to physicists, astrophysicists, and chemists.
Download or read book Geometric Structures of Phase Space in Multi Dimensional Chaos written by Mikito Toda and published by John Wiley & Sons. This book was released on 2004-12-20 with total page 711 pages. Available in PDF, EPUB and Kindle. Book excerpt: This series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Volume 130 in the series continues to report recent advances with significant, up-to-date chapters by internationally recognized researchers.
Download or read book Trends In Continuum Physics Trecop 98 Proceedings Of The International Sym written by Maruszewski Bogdan T and published by World Scientific. This book was released on 1999-03-12 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: A system is loosely defined as complex if it is composed of a large number of elements, interacting with each other, and the emergent global dynamics is qualitatively different from the dynamics of each one of the parts. The global dynamics may be either ordered or chaotic and among the most interesting emergent global properties are those of learning and adaptation.Complex systems, in the above sense, appear in many fields ranging from physics and technology to life and social sciences. Research in complex systems involves therefore a wide range of topics, studied in seemingly disparate fields. This calls for some effort to develop general principles and a common language so that tools developed in one field may be put to use in other fields.By collecting a few surveys of complex systems studies in physics and in technology and emphasizing their common mechanisms and interrelationships, this book attempts to contribute to the development of a common language in the sciences of complexity.Topics covered include: Integrated design in aeronautics; time and space decomposition of complex structures; complexity in electrical power networks; earthquake behaviour of structures; signal processing; fiability; use of unstable orbits in astrodynamics; dynamics of coupled oscillators; fuzziness; dark and bright solitons; neural networks; chaos and parametric perturbations; chaotic fluid dynamics; early vision and image restoration; stochastic processes in automated production lines.
Download or read book Quantum Transport in Mesoscopic Systems written by Pier A. Mello and published by Oxford University Press, USA. This book was released on 2004 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents the statistical theory of wave scattering and quantum transport in complex - chaotic and disordered - systems.
Download or read book Conformal Field Theory written by Philippe Francesco and published by Springer Science & Business Media. This book was released on 1997 with total page 922 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling an important gap in the literature, this comprehensive text develops conformal field theory from first principles. The treatment is self-contained, pedagogical, and exhaustive, and includes a great deal of background material on quantum field theory, statistical mechanics, Lie algebras and affine Lie algebras. The many exercises, with a wide spectrum of difficulty and subjects, complement and in many cases extend the text. The text is thus not only an excellent tool for classroom teaching but also for individual study. Intended primarily for graduate students and researchers in theoretical high-energy physics, mathematical physics, condensed matter theory, statistical physics, the book will also be of interest in other areas of theoretical physics and mathematics. It will prepare the reader for original research in this very active field of theoretical and mathematical physics.
Download or read book Geometry Particles and Fields written by Bjoern Felsager and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry, Particles and Fields is a direct reprint of the first edition. From a review of the first edition: "The present volume is a welcome edition to the growing number of books that develop geometrical language and use it to describe new developments in particle physics...It provides clear treatment that is accessible to graduate students with a knowledge of advanced calculus and of classical physics...The second half of the book deals with the principles of differential geometry and its applications, with a mathematical machinery of very wide range. Here clear line drawings and illustrations supplement the multitude of mathematical definitions. This section, in its clarity and pedagogy, is reminiscent of Gravitation by Charles Misner, Kip Thorne and John Wheeler...Felsager gives a very clear presentation of the use of geometric methods in particle physics...For those who have resisted learning this new language, his book provides a very good introduction as well as physical motivation. The inclusion of numerous exercises, worked out, renders the book useful for independent study also. I hope this book will be followed by others from authors with equal flair to provide a readable excursion into the next step." PHYSICS TODAY Bjoern Felsager is a high school teacher in Copenhagen. Educated at the Niels Bohr Institute, he has taught at the Universities of Copenhagen and Odense.
Download or read book Universality in Nonequilibrium Lattice Systems written by Geza Odor and published by World Scientific. This book was released on 2008 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically.The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.)The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems.
Download or read book Continuum Thermodynamics and Constitutive Theory written by Christina Papenfuß and published by Springer Nature. This book was released on 2020-05-16 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents different thermodynamic approaches in the area of constitutive theory: thermodynamics of irreversible processes, rational thermodynamics, and extended thermodynamics. These different approaches are analyzed with respect to their presuppositions, as well as to their results, and each method is applied to several important examples. In many cases these examples are archetypes for numerous technologically important materials; i.e. complex materials having an internal structure. Some of the examples dealt with in this book are liquid crystals, colloid suspensions, ans fiber suspensions. The book well serves students and researchers who have basic knowledge in continuum mechanics and thermodynamics. It provides a systematic overview of the vast field of thermodynamic constitutive theory, beginning from a historical perspective and concluding with outstanding questions in recent research.
Download or read book Particle and Continuum Aspects of Mesomechanics written by George C. Sih and published by John Wiley & Sons. This book was released on 2010-01-05 with total page 837 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title brings together a variety of papers presented at the 9th annual Meso meeting in 2007. The topics selected for Meso 2007 are designed to illustrate the relation of thresholds to multiscaling: Flow through capillary tubes in contrast to pipes Laminar and turbulent flow transition Heat convection of thin wires in contrast to cylinders Electrical conductance of macro- and nano-circuits Rubbery and glassy polymers Single- and poly-crystal behavior Strength of wires and round cylindrical bars Uni-axial and multi-axial material: linear and non-linear response Thin and thick plate behavior Brittle and ductile fracture Small and large crack growth behavior Low and high temperature effects Local and global material property characteristics Small and large bodies: size and time effects Specimen and structure
Download or read book Introduction to Superstrings and M Theory written by Michio Kaku and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: Called by some "the theory of everything," superstrings may solve a problem which has eluded physicists for the past 50 years -- the final unification of the two great theories of the twentieth century, general relativity and quantum field theory. This is a course-tested comprehensive introductory graduate text on superstrings which stresses the most current areas of interest, not covered in other presentation, including: string field theory, multi loops, Teichmueller spaces, conformal field theory, and four-dimensional strings. The book begins with a simple discussion of point particle theory, and uses the Feynman path integral technique to unify the presentation of superstrings. Prerequisites are an aquaintance with quantum mechanics and relativity. This second edition has been revised and updated throughout.