EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Introduction to Mesoscopic Physics

Download or read book Introduction to Mesoscopic Physics written by Yoseph Imry and published by . This book was released on 2002 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mesoscopic physics refers to the physics of structures larger than a nanometer (one billionth of a meter) but smaller than a micrometer (one millionth of a meter). This size range is the stage on which the exciting new research on submicroscopic and electronic and mechanical devices is being done. This research often crosses the boundary between physics and engineering, since engineering such tiny electronic components requires a firm grasp of quantum physics. Applications for the future may include such wonders as microscopic robot surgeons that travel through the blood stream to repair clogged arteries, submicroscopic actuators and builders, and supercomputers that fit on the head of a pin. The world of the future is being planned and built by physicists, engineers, and chemists working in the microscopic realm. This book can be used as the main text in a course on mesoscopic physics or as a supplementary text in electronic devices, semiconductor devices, and condensed matter physics courses. For this new edition, the author has substantially updated and modified the material especially of chapters 3: Dephasing, 8: Noise in mesoscopic systems, and the concluding chapter 9.

Book Mesoscopic Physics and Nanoelectronics

Download or read book Mesoscopic Physics and Nanoelectronics written by Felix A. Buot and published by . This book was released on 1993 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Physics of Nanoelectronics

Download or read book The Physics of Nanoelectronics written by Tero T. Heikkilä and published by Oxford University Press. This book was released on 2013-01-31 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to phenomena and models in nanoelectronics. It starts from the basics, but also introduces topics of recent interest, such as superconducting qubits, graphene, and quantum nanoelectromechanics.

Book Electronic Transport in Mesoscopic Systems

Download or read book Electronic Transport in Mesoscopic Systems written by Supriyo Datta and published by Cambridge University Press. This book was released on 1997-05-15 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.

Book Transport in Nanostructures

    Book Details:
  • Author : David K. Ferry
  • Publisher : Cambridge University Press
  • Release : 2009-08-20
  • ISBN : 0521877482
  • Pages : 671 pages

Download or read book Transport in Nanostructures written by David K. Ferry and published by Cambridge University Press. This book was released on 2009-08-20 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.

Book Quantum Transport in Mesoscopic Systems

Download or read book Quantum Transport in Mesoscopic Systems written by Pier A. Mello and published by Oxford University Press, USA. This book was released on 2004 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents the statistical theory of wave scattering and quantum transport in complex - chaotic and disordered - systems.

Book Transport in Nanostructures

    Book Details:
  • Author : David K. Ferry
  • Publisher : Cambridge University Press
  • Release : 2009-08-20
  • ISBN : 1139480839
  • Pages : 671 pages

Download or read book Transport in Nanostructures written by David K. Ferry and published by Cambridge University Press. This book was released on 2009-08-20 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.

Book Perspectives of Mesoscopic Physics

Download or read book Perspectives of Mesoscopic Physics written by Amnon Aharony and published by World Scientific. This book was released on 2010 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Professor Yoseph (Joe) Imry, an early initiator of mesoscopic physics, has been among the leaders in this field for several decades. This book contains articles by leading (theoretical and experimental) scientists working in nanoscience and in related fields. Most of the contributions, consisting both reviews of the state of the art and new results, summarize invited talks given at two conferences held in honor of Imry's 70th birthday: the 101st Statistical Mechanics Conference (Rutgers University, May 10?12, 2009), and Perspectives of Mesoscopic Physics (Weizmann Institute of Science, May 31?June 1, 2009). This book covers a broad range of active research in nanoscience, including topics like quantum interference, decoherence, electron correlations, nano superconductors and nano magnets, nonequilibrium and glassy behavior.

Book Electronic Trsprt Mesoscopic Sys

Download or read book Electronic Trsprt Mesoscopic Sys written by Supriyo Datta and published by . This book was released on 2014-05-14 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough account of the theory of electronic transport in semiconductor nanostructures.

Book Transport in Semiconductor Mesoscopic Devices

Download or read book Transport in Semiconductor Mesoscopic Devices written by David K. Ferry and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern electronics is being transformed as device size decreases to a size where the dimensions are significantly smaller than the constituent electron's mean free path. In such systems the electron motion is strongly confined resulting in dramatic changes of behaviour compared to the bulk. This book introduces the physics and applications of transport in such mesoscopic and nanoscale electronic systems and devices. The behaviour of these novel devices is influenced by numerous effects not seen in bulk semiconductors, such as the Aharonov-Bohm Effect, disorder and localization, energy quantization, electron wave interference, spin splitting, tunnelling and the quantum hall effect to name a few. Including coverage of recent developments, and with a chapter on carbon-based nanoelectronics, this book will provide a good course text for advanced students or as a handy reference for researchers or those entering this interdisciplinary area.

Book Introductory Nanoelectronics

Download or read book Introductory Nanoelectronics written by Vinod Kumar Khanna and published by CRC Press. This book was released on 2020-07-21 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory text develops the reader’s fundamental understanding of core principles and experimental aspects underlying the operation of nanoelectronic devices. The author makes a thorough and systematic presentation of electron transport in quantum-confined systems such as quantum dots, quantum wires, and quantum wells together with Landauer-Büttiker formalism and non-equilibrium Green’s function approach. The coverage encompasses nanofabrication techniques and characterization tools followed by a comprehensive exposition of nanoelectronic devices including resonant tunneling diodes, nanoscale MOSFETs, carbon nanotube FETs, high-electron-mobility transistors, single-electron transistors, and heterostructure optoelectronic devices. The writing throughout is simple and straightforward, with clearly drawn illustrations and extensive self-study exercises for each chapter. Introduces the basic concepts underlying the operation of nanoelectronic devices. Offers a broad overview of the field, including state-of-the-art developments. Covers the relevant quantum and solid-state physics and nanoelectronic device principles. Written in lucid language with accessible mathematical treatment. Includes extensive end-of-chapter exercises and many insightful diagrams.

Book Nanoscale Device Physics

    Book Details:
  • Author : Sandip Tiwari
  • Publisher : Oxford University Press
  • Release : 2017-03-31
  • ISBN : 0191078042
  • Pages : 682 pages

Download or read book Nanoscale Device Physics written by Sandip Tiwari and published by Oxford University Press. This book was released on 2017-03-31 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale devices differ from larger microscale devices because they depend on the physical phenomena and effects that are central to their operation. This textbook illuminates the behavior of nanoscale devices by connecting them to the electronic, as well as magnetic, optical and mechanical properties, which fundamentally affect nanoscale devices in fascinating ways. Their small size means that an understanding of the phenomena measured is even more important, as their effects are so dominant and the changes in scale of underlying energetics and response are significant. Examples of these include classical effects such as single electron effects, quantum effects such as the states accessible as well as their properties; ensemble effects ranging from consequences of the laws of numbers to changes in properties arising from different magnitudes of the interactions, and others. These interactions, with the limits on size, make their physical behavior interesting, important and useful. The collection of four textbooks in the Electroscience Series culminates in a comprehensive understanding of nanoscale devices — electronic, magnetic, mechanical and optical — in the 4th volume. The series builds up to this last subject with volumes devoted to underlying semiconductor and solid-state physics.

Book Quantum Chaos and Quantum Dots

Download or read book Quantum Chaos and Quantum Dots written by Katsuhiro Nakamura and published by . This book was released on 2004 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamics of billiard balls and their role in physics have received wide attention since the monumental lecture by Lord Kelvin at the turn of the 19th century. Billiards can nowadays be created as quantum dots in the microscopic world enabling one to envisage the so-called quantum chaos, i.e.quantum manifestation of chaos of billiard balls. In fact, owing to recent progress in advanced technology, nanoscale quantum dots, such as chaotic stadium and antidot lattices analogous to the Sinai Billiard, can be fabricated at the interface of semiconductor heterojunctions. This book begins itsexploration of the effect of chaotic electron dynamics on ballistic quantum transport in quantum dots with a puzzling experiment on resistance fluctuations for stadium and circle dots. Throughout the text, major attention is paid to the semiclassical theory which makes it possible to interpretquantum phenomena in the language of the classical world. Chapters one to four are concerned with the elementary statistical methods (curvature, Lyapunov exponent, Kolmogorov-Sinai entropy and escape rate), which are needed for a semiclassical description of transport in quantum dots. Chapters fiveto ten discuss the topical subjects in the field, including the ballistic weak localization, Altshuler-Aronov-Spivak oscillation, partial time-reversal symmetry, persistent current, Arnold diffusion and Coulomb blockade.

Book Mesoscopic Physics and Electronics

Download or read book Mesoscopic Physics and Electronics written by Tsuneya Ando and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir,cuits. Smaller fea ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system.

Book Nanomaterials

    Book Details:
  • Author : A.S Edelstein
  • Publisher : CRC Press
  • Release : 1998-01-01
  • ISBN : 9780750305785
  • Pages : 1244 pages

Download or read book Nanomaterials written by A.S Edelstein and published by CRC Press. This book was released on 1998-01-01 with total page 1244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomaterials: Synthesis, Properties and Applications provides a comprehensive introduction to nanomaterials, from how to make them to example properties, processing techniques, and applications. Contributions by leading international researchers and teachers in academic, government, and industrial institutions in nanomaterials provide an accessible guide for newcomers to the field. The coverage ranges from isolated clusters and small particles to nanostructured materials, multilayers, and nanoelectronics. The book contains a wealth of references for further reading. Individual chapters deal with relevant aspects of the underlying physics, materials science, and physical chemistry.

Book Transport in Semiconductor Mesoscopic Devices

Download or read book Transport in Semiconductor Mesoscopic Devices written by David K. Ferry and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This textbook introduces the physics and applications of transport in mesoscopic devices and nanoscale electronic systems and devices. This expanded second edition is fully updated and contains the latest research in the field, including nano-devices for qubits, from both silicon quantum dots and superconducting SQUID circuits. Each chapter has worked examples, problems and solutions, and videos are provided as supplementary material. Intended as a textbook for first-year graduate courses in nanoelectronics or mesoscopic physics, the book is also a valuable reference text for researchers interested in nanostructures, and useful supplementary reading for advanced courses in quantum mechanics and electronic devices." -- Prové de l'editor.

Book Tribology on the Small Scale

Download or read book Tribology on the Small Scale written by C. Mathew Mate and published by Oxford University Press. This book was released on 2008 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Friction, lubrication, adhesion, and wear are prevalent physical phenomena in everyday life and in many key technologies. This book explains how these tribological phenomena originate from atomistic and microscale physical phenomena and shows how this understanding can be used to solve macroscale tribology problems. The book is intended to serve both as a textbook for advanced undergraduate and graduate courses in tribology and as an introduction to the field for those scientists and engineers working with technologies where a good grasp of tribology is essential.