EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mesoscale Modeling of Directed Self Assemblies of Block Copolymer Lithography

Download or read book Mesoscale Modeling of Directed Self Assemblies of Block Copolymer Lithography written by Shubham Dattaram Pinge and published by . This book was released on 2016 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers (BCPs) self organize at molecular level building blocks and forming nano-structures with characteristic length scales. As these nano-structures resemble the lithographic features desired in the micro-electronics industry, they are used as a nanotemplate in the manufacture of micro-chips. This study focusses on the pillarpost guide method of directing self assemblies to form 'punch hole' lithographic nano-patterns. The work aims to elucidate the necessary conditions required to form hexagonal packed cylinders using di-block copolymers. It sheds lights on various factors that affect the BCP self assembly and how the morphology is altered due to these factors. These include biasing the surfaces (selective towards one of the BCP phase) and altering the BCP properties (chain length, volume fraction etc). The morphologies attained have been independently verified by experimental results obtained from our collaborators at EMD Performance Materials Group, NJ-USA. Apart from optimizing the morphology of the system, fundamental studies have been performed on the system. The behavior of the BCP chains is analyzed under a simple confinement between two flat substrates that selectively wets one of the phases. The morphology thus formed is studied with the polymer chain length being the reaction coordinate for a fixed critical confinement. The results obtained from the fundamental study has helped us in explaining the morphology formed in a more complex geometry like pillarpost guide that uses topography to confine the polymers. This in turn has proven to be of great benefit to optimally design the system and achieve the ideal nanolithographic patterns. iii.

Book Coarse Grained Modeling of Block Copolymer Lithography  The Effects of Pattern Design on the Thermodynamics and Kinetics of the Directed Self Assembly of Block Copolymers

Download or read book Coarse Grained Modeling of Block Copolymer Lithography The Effects of Pattern Design on the Thermodynamics and Kinetics of the Directed Self Assembly of Block Copolymers written by Grant Parker Garner and published by . This book was released on 2017 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Prior to the work presented in Chapter 2, the TICG model has been used in conjunction with a chemical pattern that is approximated as a hard-impenetrable surface. As many experimental systems use polymer brushes to help guide the polymer melt deposited on the substrate, this work analyzes the consequences of such an assumption by comparing a model where the polymer brush is explicitly implemented to the hard-wall substrate used in the past. Then, a methodology which utilizes a evolutionary optimization method is used to map the parameters of the more detailed model to the hard-surface model. This provides a qualitative understanding of how to interpret the model parameters used in previous works in the context of real experimental pattern designs.

Book Directed Self assembly of Block Copolymer Films on Chemically Nanopatterned Surfaces

Download or read book Directed Self assembly of Block Copolymer Films on Chemically Nanopatterned Surfaces written by Adam M. Welander and published by . This book was released on 2009 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling and Theoretical Design Methods for Directed Self assembly of Thin Film Block Copolymer Systems

Download or read book Modeling and Theoretical Design Methods for Directed Self assembly of Thin Film Block Copolymer Systems written by Adam Floyd Hannon and published by . This book was released on 2014 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers (BCPs) have become a highly studied material for lithographic applications due to their ability to self-assemble into complex periodic patterns with feature resolutions ranging from a few to 100s nm. BCPs form a wide variety of patterns due the combination of their enthalpic interactions promoting immiscibility between the blocks and the bonding constraint through their chain topology. The morphologies formed can be tailored through a directed self-assembly (DSA) process using chemical or topographical templates to achieve a desired thin film pattern. This method combines the traditional top-down lithographic methods with the bottom-up self-assembly process to obtain greater control over long range order, the local morphology, and overall throughput of the patterns produced. This work looks at key modeling challenges in optimizing BCP DSA to achieve precision morphology control, reproducibility, and defect control. Modeling techniques based on field theoretic simulations are used to both characterize and predict the morphological behavior of a variety of BCPs under a variety of processing conditions including solvent annealing and DSA under topographical boundary conditions. These methods aid experimental studies by saving time in performing experiments over wide parameter spaces as well as elucidating information that may not be available by current experimental techniques. Both forward simulation approaches are studied where parameters are varied over a wide range with phase diagrams of potential morphologies characterized and inverse design approaches where given target patterns are taken as simulation input and required conditions to produce those patterns are outputted from the simulation for experimental testing. The studies ultimately help identify the key control parameters in BCP DSA and enable a vast array of possible utility in the field.

Book Directed Self assembly of Block Co polymers for Nano manufacturing

Download or read book Directed Self assembly of Block Co polymers for Nano manufacturing written by Roel Gronheid and published by Woodhead Publishing. This book was released on 2015-07-17 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing Highlights the importance of this technology to both the present and future of nano-manufacturing by exploring its potential use in a range of fields

Book Directed Self assembly of Diblock Copolymer Thin Films on Chemically Nanopatterned Substrates

Download or read book Directed Self assembly of Diblock Copolymer Thin Films on Chemically Nanopatterned Substrates written by Erik WiIliam Edwards and published by . This book was released on 2005 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Directed Self assembly of Block Copolymers and Ternary Block Copolymer homopolymer Blends on Chemically Patterned Surfaces Into Device oriented Geometries

Download or read book Directed Self assembly of Block Copolymers and Ternary Block Copolymer homopolymer Blends on Chemically Patterned Surfaces Into Device oriented Geometries written by Mark P. Stoykovich and published by . This book was released on 2007 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Materials Design for Block Copolymer Lithography

Download or read book Materials Design for Block Copolymer Lithography written by and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers (BCPs) have attracted a great deal of scientific and technological interest due to their ability to spontaneously self-assemble into dense periodic nanostructures with a typical length scale of 5 to 50 nm. The use of self-assembled BCP thin-films as templates to form nanopatterns over large-area is referred to as BCP lithography. Directed self-assembly of BCPs is now viewed as a viable candidate for sub-20 nm lithography by the semiconductor industry. However, there are multiple aspects of assembly and materials design that need to be addressed in order for BCP lithography to be successful. These include substrate modification with polymer brushes or mats, tailoring of the block copolymer chemistry, understanding thin-film assembly and developing epitaxial like methods to control long range alignment. The rational design, synthesis and self-assembly of block copolymers with large interaction parameters (chi) is described in the first part of this dissertation. Two main blocks were chosen for introducing polarity into the BCP system, namely poly(4-hydroxystyrene) and poly(2-vinylpyridine). Each of these blocks are capable of ligating Lewis acids which can increase the etch contrast between the blocks allowing for facile pattern transfer to the underlying substrate. These BCPs were synthesized by living anionic polymerization and showed excellent control over molecular weight and dispersity, providing access to sub 5-nm domain sizes. Polymer brushes consist of a polymer chain with one end tethered to the surface and have wide applicability in tuning surface energy, forming responsive surfaces and increasing biocompatibility. In the second part of the dissertation, we present a universal method to grow dense polymer brushes on a wide range of substrates and combine this chemistry with BCP assembly to fabricate nanopatterned polymer brushes. This is the first demonstration of introducing additional functionality into a BCP directing layer and opens up a wide slew of applications from directed self-assembly to biomaterial engineering.

Book Numerical Simulations of Directed Self assembly Methods in Di block Copolymer Films for Efficient Manufacturing of Nanoscale Patterns with Long range Order

Download or read book Numerical Simulations of Directed Self assembly Methods in Di block Copolymer Films for Efficient Manufacturing of Nanoscale Patterns with Long range Order written by Joseph Dee Hill and published by . This book was released on 2020 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Directed self-assembly (DSA) of block copolymers (BCPs) has been shown as a viable method to achieve bulk fabrication of surface patterns with feature sizes smaller than those available through traditional photolithography. Under appropriate thermodynamic conditions, BCPs will self-assemble into ordered micro-domain morphologies, a desirable feature for many applications. One of the primary interests in this field of research is the application of thin-film BCPs to existing photolithography techniques. This "bottom-up" approach utilizes the self-assembled BCP nanostructures as a sacrificial templating layer in the lithographic process. While self-assembly occurs spontaneously, extending orientational uniformity over centimeter-length scales remains a critical challenge. A number of DSA techniques have been developed to enhance the long range order in an evolving BCP system during micro-phase separation. Of primary interest to this dissertation is the synergistic behavior between chemoepitaxial templating and cold-zone annealing. The first method involves pre-treating a substrate with chemical boundaries that will attract or repel one of the monomer blocks before application of the thin-film via spin-coating. The second method applies a mobile, thermal gradient to induce micro-phase separation in a narrow region within the homogeneous thin-film . Parametric studies have been performed to characterize the extent of long range order and defect densities obtained by applying various thermal zone velocities and template patterns. These simulations are performed by utilizing a Time-Dependent Ginzburg-Landau (TDGL) model and an optimized phase field (OPF) model. Parallel processing is implemented to allow large-scale simulations to be performed within a reasonable time period.

Book Directed Self Assembly of Symmetric Block Copolymer with Density Multiplication for Nanopatterning Applications

Download or read book Directed Self Assembly of Symmetric Block Copolymer with Density Multiplication for Nanopatterning Applications written by Xuanxuan Chen and published by . This book was released on 2017 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers (BCPs) are a group of fascinating materials that self-assemble into highly uniform nanoscale structures. With precise control of interfacial properties on both interfaces, these nanostructures can be directed to form user-defined periodic patterns. The directed self-assembly (DSA) of BCPs offers a cost-effective solution to complement the conventional lithography with the capability of density multiplication and pattern rectification. This dissertation mainly focuses on the chemoepitaxial DSA of symmetric BCP into line patterns.

Book Combination of Nanoimprint Lithography with Block Copolymer Directed Self Assembly

Download or read book Combination of Nanoimprint Lithography with Block Copolymer Directed Self Assembly written by Laetitia Esther West and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computation by Block Copolymer Self assembly

Download or read book Computation by Block Copolymer Self assembly written by Hyung Wan Do and published by . This book was released on 2018 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unconventional computation is a paradigm of computation that uses novel information tokens from natural systems to perform information processing. Using the complexity of physical systems, unconventional computing systems can efficiently solve problems that are difficult to solve classically. In this thesis, we use block copolymer self-assembly, a well-studied phenomenon in polymer science, to develop a new approach to computing by applying directed self-assembly to implement Ising-model-based computing systems in materials. In the first part of the thesis, we investigate directed self-assembly of block copolymer thin films within templates of different polygonal shapes. We define a two-state system based on the two degenerate alignment orientations of the ladder-shaped block copolymer structures formed inside square confinements, and study properties of the two-state system. In the second part of the thesis, we demonstrate an Ising lattice setup for directed self-assembly of block copolymers defined on two-dimensional arrays of posts. We develop an Ising-model-based simulation method that can perform block copolymer pattern prediction and template design. Finally, we design simple Boolean logic gates as a proof-of-concept demonstration of computation.

Book Block Copolymer Self assembly   a Computational Approach Towards Novel Morphologies

Download or read book Block Copolymer Self assembly a Computational Approach Towards Novel Morphologies written by Karim Raafat Gadelrab and published by . This book was released on 2019 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spontaneous self-assembly of materials is a phenomenon exhibited by different molecular systems. Among many, Block copolymers (BCPs) proved to be particularly interesting due to their ability to microphase separate into periodic domains. Nonetheless, the rising need for arbitrary, complex, 3D nanoscale morphology shows that what is commonly achievable is quite limited. Expanding the range of BCPs morphologies could be attained through the implementation of a host of strategies that could be used concurrently. Using directed self-assembly (DSA), a sphere forming BCP was assembled in a randomly displaced post template to study system resilience towards defect creation. Template shear-like distortion seemed to govern local defect generation. Defect clusters with symmetries compatible with that of the BCP showed enhanced stability. Using 44 and 32434 Archimedean tiling templates that are incompatible with BCP six-fold symmetry created low symmetry patterns with an emergent behavior dependent on pattern size and shape. A variation of DSA is studied using modulated substrates. Layer-by-layer deposition of cylinder forming BCPs was investigated. Self-consistent field theory (SCFT) and strong segregation theory SST were employed to provide the understanding and the conditions under which particular orientations of consecutive layers were produced. Furthermore, deep functionalized trenches were employed to create vertically standing high-[chi] BCP structures. Changing annealing conditions for a self-assembled lamellar structure evolved the assembled pattern to a tubular morphology that is non-native to diblock copolymers. A rather fundamental but challenging strategy to go beyond the standard motifs common to BCPs is to synthesize multiblock molecules with an expanded design space. Triblock copolymers produced bilayer perforated lamellar morphology. SCFT analysis showed a large window of stability of such structures in thin films. In addition, a model for bottlebrush BCPs (BBCPs) was constructed to investigate the characteristics of BBCPs self-assembly. Pre-stacked diblock sidechains showed improved microphase separation while providing domain spacing relevant to lithography applications. A rich phase diagram was constructed at different block concentrations. The ability to explore new strategies to discover potential equilibrium morphologies in BCPs is supported by strong numerical modeling and simulations efforts. Accelerating SCFT performance would greatly benefit BCP phase discovery. Preliminary work discussed the first attempt to Neural Network (NN) assisted SCFT. The use of NN was able to cut on the required calculations steps to reach equilibrium morphology, demonstrating accelerated calculation, and escaping trapped states, with no effect on final structure.

Book Templated Self assembly of Novel Block Copolymers

Download or read book Templated Self assembly of Novel Block Copolymers written by Li-Chen Cheng (Ph.D.) and published by . This book was released on 2019 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-assembly of block copolymers (BCPs) is emerging as a promising route for numerous technological applications to fabricate a variety of nanoscopic structures. The resulting feature sizes range from a few to several hundred nanometers, and are readily tunable by varying the molecular weights of block copolymers. Directed self-assembly of block copolymer is an effective way to pattern periodic arrays of features with long-range order, to generate complex patterns, and to multiplicatively increase the pattern density and resolution that are far beyond the limit of conventional lithography. Despite of the significant progress in the area of directed self-assembly in recent years, critical research problems regarding the dimension scalability toward sub-10-nm regime and large feature sizes on hundreds of nanometers scale as well as the capability of generating complex device-oriented patterns remain challenging. In this thesis, BCP systems, including high-v BCPs that are capable of self-assembling into extreme small and large feature sizes as well as those with more complex block architectures, are identified and studied in order to understand how those materials may be processed and directed selfassembly to bridge the patterning size spectrum between nano- and micro-fabrication. Another focus is placed on the scientific exploration of directed self-assembly of triblock terpolymers and the investigation on the mechanisms that regulate the scaling and geometry of self-assembled patterns. A comprehensive understanding about self-assembly of BCP thin films will enable developing device-oriented geometries, manipulating BCPs phase behavior, and incorporating new functional materials for a wider range of applications. In the meanwhile, optimizing the processing condition of self-assembly of various BCPs is essential to confirm viability of the directed self-assembly of block copolymers process in manufacturing.

Book High Interaction Parameter Block Copolymers for Advanced Lithography

Download or read book High Interaction Parameter Block Copolymers for Advanced Lithography written by Julia Dianne Cushen and published by . This book was released on 2013 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers demonstrate potential in next-generation lithography as a solution for overcoming the limitations of conventional lithographic techniques. Ideal block copolymer materials for this application can be synthesized on a commercial scale, have high [chi]-parameters promoting self-assembly into sub-20 nm pitch domains, have controllable alignment and orientation, and have high etch contrast between the domains for facilitating pattern transfer into the underlying substrate. Block copolymers that contain silicon in one domain are attractive for nanopatterning since they often fulfill at least three of these requirements. However, silicon-containing materials are notoriously difficult to orient in thin films due to the low surface energy of the silicon-containing block, which typically wets the free surface interface. In this work, the methodology behind material choice and the synthesis of new silicon-containing block copolymers by a variety of polymerization techniques will be described. Thin film self-assembly of the block copolymers with domains oriented perpendicular to the plane of the substrate is achieved using different solvent annealing and neutral surface treatments with thermal annealing conditions. Block copolymer patterns are transferred to the underlying substrate by reactive ion etching and directed self-assembly of the polymers is demonstrated using chemical contrast patterns. Interesting thermodynamics governing the self-assembly of block copolymers with solvent annealing will also be discussed. Finally, new amphiphilic block copolymers will be described that were created with lithographic applications in mind but that are most useful for biological applications in drug delivery.

Book Next Generation Materials for Block Copolymer Lithography

Download or read book Next Generation Materials for Block Copolymer Lithography written by Michael Joseph Maher and published by . This book was released on 2016 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electronics industry is a trillion dollar industry that has drastically changed everyday life. Advances in lithography have enabled manufacturers to continually shrink the dimensions of microelectronic components, which has resulted in devices that outperform previous generations. Unfortunately, conventional patterning techniques are approaching their physical resolution limits. The ability to economically pattern sub-10 nm features is necessary for the future growth of the industry. Block copolymer self-assembly has emerged as a leading candidate for next generation lithography and nanofabrication because block copolymers self-assemble into periodic nanostructures (e.g. cylinders and lamellae) on a length scale that exceeds the physical limits of optical lithography. However, for block copolymer lithography to be realized, the block copolymer domains need to form sub-10 nm features and display etch resistance for pattern transfer. Additionally, the orientation, alignment, and placement of block copolymer domains must be carefully controlled. This dissertation discusses the synthesis, orientation and alignment of silicon-containing BCPs that are inherently etch resistant and provide access to nanostructures in the sub-10 nm regime. The orientation of domains is controlled by interactions between each block copolymer domain and each interface. Preferential interactions between the block copolymer domains and the either the substrate or air interface lead to a parallel orientation of domains, which is not useful for lithography. Non-preferential (“neutral”) interactions are needed to promote the desired perpendicular orientation. The synthesis of surface treatments and top coats is described, and methods to determine the preferential and non-preferential interactions are reported. Orientation control is demonstrated via rapid thermal annealing between two neutral surfaces. Combining orientation control of block copolymer domains with well established directed self-assembly strategies was used to produce perpendicular domains with long range order. Chapter 1 provides an introduction to lithography and block copolymer self-assembly. Chapter 2 discusses the synthesis of silicon-containing block copolymers. Chapters 4-6 focus on controlling block copolymer domain orientation, and Chapter 7 focuses on directed self-assembly. Chapter 8 covers spatial orientation control of domains using photopatternable interfaces. Finally, Chapter 9 covers tin-containing polymers that are resistant to fluorine-containing etch chemistries and can be used to pattern silicon oxide.