EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Meshless Methods and Their Numerical Properties

Download or read book Meshless Methods and Their Numerical Properties written by Hua Li and published by CRC Press. This book was released on 2013-02-22 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meshless, or meshfree methods, which overcome many of the limitations of the finite element method, have achieved significant progress in numerical computations of a wide range of engineering problems. A comprehensive introduction to meshless methods, Meshless Methods and Their Numerical Properties gives complete mathematical formulations for the most important and classical methods, as well as several methods recently developed by the authors. This book also offers a rigorous mathematical treatment of their numerical properties—including consistency, convergence, stability, and adaptivity—to help you choose the method that is best suited for your needs. Get Guidance for Developing and Testing Meshless Methods Developing a broad framework to study the numerical computational characteristics of meshless methods, the book presents consistency, convergence, stability, and adaptive analyses to offer guidance for developing and testing a particular meshless method. The authors demonstrate the numerical properties by solving several differential equations, which offer a clearer understanding of the concepts. They also explain the difference between the finite element and meshless methods. Explore Engineering Applications of Meshless Methods The book examines how meshless methods can be used to solve complex engineering problems with lower computational cost, higher accuracy, easier construction of higher-order shape functions, and easier handling of large deformation and nonlinear problems. The numerical examples include engineering problems such as the CAD design of MEMS devices, nonlinear fluid-structure analysis of near-bed submarine pipelines, and two-dimensional multiphysics simulation of pH-sensitive hydrogels. Appendices supply useful template functions, flowcharts, and data structures to assist you in implementing meshless methods. Choose the Best Method for a Particular Problem Providing insight into the special features and intricacies of meshless methods, this is a valuable reference for anyone developing new high-performance numerical methods or working on the modelling and simulation of practical engineering problems. It guides you in comparing and verifying meshless methods so that you can more confidently select the best method to solve a particular problem.

Book Meshless Methods and Their Numerical Properties

Download or read book Meshless Methods and Their Numerical Properties written by Hua Li and published by CRC Press. This book was released on 2013-02-22 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meshless, or meshfree methods, which overcome many of the limitations of the finite element method, have achieved significant progress in numerical computations of a wide range of engineering problems. A comprehensive introduction to meshless methods, Meshless Methods and Their Numerical Properties gives complete mathematical formulations for the m

Book An Introduction to Meshfree Methods and Their Programming

Download or read book An Introduction to Meshfree Methods and Their Programming written by G.R. Liu and published by Springer Science & Business Media. This book was released on 2005-12-05 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.

Book Numerical Methods for Energy Applications

Download or read book Numerical Methods for Energy Applications written by Naser Mahdavi Tabatabaei and published by Springer Nature. This book was released on 2021-03-22 with total page 1033 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough guide to the use of numerical methods in energy systems and applications. It presents methods for analysing engineering applications for energy systems, discussing finite difference, finite element, and other advanced numerical methods. Solutions to technical problems relating the application of these methods to energy systems are also thoroughly explored. Readers will discover diverse perspectives of the contributing authors and extensive discussions of issues including: • a wide variety of numerical methods concepts and related energy systems applications;• systems equations and optimization, partial differential equations, and finite difference method;• methods for solving nonlinear equations, special methods, and their mathematical implementation in multi-energy sources;• numerical investigations of electrochemical fields and devices; and• issues related to numerical approaches and optimal integration of energy consumption. This is a highly informative and carefully presented book, providing scientific and academic insight for readers with an interest in numerical methods and energy systems.

Book Numerical Methods and Implementation in Geotechnical Engineering     Part 1

Download or read book Numerical Methods and Implementation in Geotechnical Engineering Part 1 written by Y.M. Cheng and published by Bentham Science Publishers. This book was released on 2020-04-01 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods and Implementation in Geotechnical Engineering explains several numerical methods that are used in geotechnical engineering. The first part of this reference set includes methods such as the finite element method, distinct element method, discontinuous deformation analysis, numerical manifold method, smoothed particle hydrodynamics method, material point method, plasticity method, limit equilibrium and limit analysis, plasticity, slope stability and foundation engineering, optimization analysis and reliability analysis. The authors have also presented different computer programs associated with the materials in this book which will be useful to students learning how to apply the models explained in the text into practical situations when designing structures in locations with specific soil and rock settings. This reference book set is a suitable textbook primer for civil engineering students as it provides a basic introduction to different numerical methods (classical and modern) in comprehensive readable volumes.

Book Environmental Contaminants

Download or read book Environmental Contaminants written by Tarun Gupta and published by Springer. This book was released on 2017-11-28 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the measurement of environmental contaminants in water, air, and soil. It also presents modifications of and improvements to existing control technologies for remediation of environmental contaminants. It covers improved designs of wastewater systems and innovations in designing newer membranes for water treatment. In addition, it includes two separate sections on the modelling and control of different existing and emerging pollutants. It covers major topics such as: pharmaceutical wastes, paper and pulp waste, poly aromatic hydrocarbons, mining dust, bioaerosols, endosulphan, biomass combustion, and landfill design aspects. It also features chapters on environmental exposure and modelling of aerosol deposition within human lungs. The content of this book will be of interest to researchers, professionals, and policymakers whose work involves environmental contaminants and related solutions.

Book Hygro Thermo Magneto Electro Elastic Theory of Anisotropic Doubly Curved Shells

Download or read book Hygro Thermo Magneto Electro Elastic Theory of Anisotropic Doubly Curved Shells written by Francesco Tornabene and published by Società Editrice Esculapio. This book was released on 2023-10-13 with total page 1073 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to present in depth several Higher-order Shear Deformation Theories (HSDTs) by means of a unified approach for studying the Hygro-Thermo-Magneto-Electro- Elastic Theory of Anisotropic Doubly-Curved Shells. In particular, a general coupled multifield theory regarding anisotropic shell structures is provided. The three-dimensional multifield problem is reduced in a two-dimensional one following the principles of the Equivalent Single Layer (ESL) approach and the Equivalent Layer-Wise (ELW) approach, setting a proper configuration model. According to the adopted configuration assumptions, several Higher-order Shear Deformation Theories (HSDTs) are obtained. Furthermore, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. The approach presented in this volume is completely general and represents a valid tool to investigate the physical behavior of many arbitrarily shaped structures. An isogeometric mapping procedure is also illustrated to this aim. Special attention is given also to advanced and innovative constituents, such as Carbon Nanotubes (CNTs), Variable Angle Tow (VAT) composites and Functionally Graded Materials (FGMs). In addition, several numerical applications are used to support the theoretical models. Accurate, efficient and reliable numerical techniques able to approximate both derivatives and integrals are considered, which are respectively the Differential Quadrature (DQ) and Integral Quadrature (IQ) methods. The Theory of Composite Thin Shells is derived in a simple and intuitive manner from the theory of thick and moderately thick shells (First-order Shear Deformation Theory or Reissner- Mindlin Theory). In particular, the Kirchhoff-Love Theory and the Membrane Theory for composite shells are shown. Furthermore, the Theory of Composite Arches and Beams is also exposed. In particular, the equations of the Timoshenko Theory and the Euler-Bernoulli Theory are directly deducted from the equations of singly-curved shells of translation and of plates.

Book Mesh Free Methods

    Book Details:
  • Author : G.R. Liu
  • Publisher : CRC Press
  • Release : 2002-07-29
  • ISBN : 1420040588
  • Pages : 715 pages

Download or read book Mesh Free Methods written by G.R. Liu and published by CRC Press. This book was released on 2002-07-29 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: As we attempt to solve engineering problems of ever increasing complexity, so must we develop and learn new methods for doing so. The Finite Difference Method used for centuries eventually gave way to Finite Element Methods (FEM), which better met the demands for flexibility, effectiveness, and accuracy in problems involving complex geometry. Now,

Book Meshfree Methods

    Book Details:
  • Author : G.R. Liu
  • Publisher : CRC Press
  • Release : 2009-10-06
  • ISBN : 1420082108
  • Pages : 772 pages

Download or read book Meshfree Methods written by G.R. Liu and published by CRC Press. This book was released on 2009-10-06 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand How to Use and Develop Meshfree TechniquesAn Update of a Groundbreaking WorkReflecting the significant advances made in the field since the publication of its predecessor, Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition systematically covers the most widely used meshfree methods. With 70% new material, this edit

Book Reduced Modelling of Planar Fuel Cells

Download or read book Reduced Modelling of Planar Fuel Cells written by Zhongjie He and published by Springer. This book was released on 2016-12-25 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on novel reduced cell and stack models for proton exchange membrane fuel cells (PEMFCs) and planar solid oxide fuel cells (P-SOFCs) that serve to reduce the computational cost by two orders of magnitude or more with desired numerical accuracy, while capturing both the average properties and the variability of the dependent variables in the 3D counterparts. The information provided can also be applied to other kinds of plate-type fuel cells whose flow fields consist of parallel plain channels separated by solid ribs. These fast and efficient models allow statistical sensitivity analysis for a sample size in the order of 1000 without prohibitive computational cost to be performed to investigate not only the individual, but also the simultaneous effects of a group of varying geometrical, material, and operational parameters. This provides important information for cell/stack design, and to illustrate this, Monte Carlo simulation of the reduced P-SOFC model is conducted at both the single-cell and stack levels.

Book The Meshless Local Petrov Galerkin  MLPG  Method

Download or read book The Meshless Local Petrov Galerkin MLPG Method written by Satya N. Atluri and published by Crest. This book was released on 2002 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Parallel Scientific Computing

Download or read book Parallel Scientific Computing written by Roman Trobec and published by Springer. This book was released on 2015-03-27 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concentrated on the synergy between computer science and numerical analysis. It is written to provide a firm understanding of the described approaches to computer scientists, engineers or other experts who have to solve real problems. The meshless solution approach is described in more detail, with a description of the required algorithms and the methods that are needed for the design of an efficient computer program. Most of the details are demonstrated on solutions of practical problems, from basic to more complicated ones. This book will be a useful tool for any reader interested in solving complex problems in real computational domains.

Book Scattered Data Approximation

Download or read book Scattered Data Approximation written by Holger Wendland and published by Cambridge University Press. This book was released on 2004-12-13 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partitions of unity. The book starts with an overview on typical applications of scattered data approximation, coming from surface reconstruction, fluid-structure interaction, and the numerical solution of partial differential equations. It then leads the reader from basic properties to the current state of research, addressing all important issues, such as existence, uniqueness, approximation properties, numerical stability, and efficient implementation. Each chapter ends with a section giving information on the historical background and hints for further reading. Complete proofs are included, making this perfectly suited for graduate courses on multivariate approximation and it can be used to support courses in computer-aided geometric design, and meshless methods for partial differential equations.

Book Meshless Methods in Solid Mechanics

Download or read book Meshless Methods in Solid Mechanics written by Youping Chen and published by Springer Science & Business Media. This book was released on 2006-12-31 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamentals of continuum mechanics, the integral formulation methods of continuum problems, the basic concepts of finite element methods, and the methodologies, formulations, procedures, and applications of various meshless methods. It also provides general and detailed procedures of meshless analysis on elastostatics, elastodynamics, non-local continuum mechanics and plasticity with a large number of numerical examples. Some basic and important mathematical methods are included in the Appendixes. For readers who want to gain knowledge through hands-on experience, the meshless programs for elastostatics and elastodynamics are provided on an included disc.

Book Meshfree Methods for Partial Differential Equations

Download or read book Meshfree Methods for Partial Differential Equations written by Michael Griebel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meshfree methods for the solution of partial differential equations gained much attention in recent years, not only in the engineering but also in the mathematics community. One of the reasons for this development is the fact that meshfree discretizations and particle models are often better suited to cope with geometric changes of the domain of interest, e.g. free surfaces and large deformations, than classical discretization techniques such as finite differences, finite elements or finite volumes. Another obvious advantage of meshfree discretizations is their independence of a mesh so that the costs of mesh generation are eliminated. Also, the treatment of time-dependent PDEs from a Lagrangian point of view and the coupling of particle models and continuous models gained enormous interest in recent years from a theoretical as well as from a practial point of view. This volume consists of articles which address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM etc.) and their application in applied mathematics, physics and engineering.

Book Biodental Engineering IV

Download or read book Biodental Engineering IV written by R.M. Natal Jorge and published by CRC Press. This book was released on 2017-11-14 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since dentistry is a branch of medicine with its own peculiarities and very diverse areas of action, it can be considered as an interdisciplinary field. BIODENTAL ENGINEERING IV contains the full papers presented at the 4th International Conference on Biodental Engineering (BIODENTAL 2016, Vila Nova de Famalicão, Portugal, 21—23 June 2016), and covers the use of new techniques and technologies in dentistry. The contributions provide a comprehensive coverage of the state-of-the art in this area, and addresses the following topics: • Aesthetics • Bioengineering • Biomaterials • Biomechanical disorders • Biomedical devices • Computational bio- imaging and visualization • Computational methods • Dental medicine • Experimental mechanics • Signal processing and analysis • Implantology • Minimally invasive devices and techniques • Orthodontics • Prosthesis and orthosis • Simulation • Software development • Telemedicine • Tissue engineering • Virtual reality BIODENTAL ENGINEERING IV will be of interest to academics and professionals involved or interested in dentistry, biomechanical disorders, numerical simulation, orthodontics, implantology, aesthetics, dental medicine, medical devices and medical imaging.

Book Fitted Numerical Methods For Singular Perturbation Problems  Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions  Revised Edition

Download or read book Fitted Numerical Methods For Singular Perturbation Problems Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions Revised Edition written by John J H Miller and published by World Scientific. This book was released on 2012-02-29 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.