EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Meromorphic Operator Valued Functions

Download or read book Meromorphic Operator Valued Functions written by Harm Bart and published by . This book was released on 1973 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analytic Perturbation Theory for Matrices and Operators

Download or read book Analytic Perturbation Theory for Matrices and Operators written by H. Baumgärtel and published by Walter de Gruyter GmbH & Co KG. This book was released on 1984-12-31 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: No detailed description available for "Analytic Perturbation Theory for Matrices and Operators".

Book Matrix and Operator Valued Functions

Download or read book Matrix and Operator Valued Functions written by I. Gohberg and published by Birkhäuser. This book was released on 2012-12-06 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of papers on different aspects of operator theory and complex analysis, covering the recent achievements of the Odessa-Kharkov school, where Potapov was very active. The book appeals to a wide group of mathematicians and engineers, and much of the material can be used for advanced courses and seminars.

Book Vertex Algebras and Algebraic Curves

Download or read book Vertex Algebras and Algebraic Curves written by Edward Frenkel and published by American Mathematical Soc.. This book was released on 2004-08-25 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.

Book Physical Foundations of the Millimeter and Submillimeter Waves Technique V 1

Download or read book Physical Foundations of the Millimeter and Submillimeter Waves Technique V 1 written by V. P. Ščestopalov and published by VSP. This book was released on 1997 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The developments in physics, biology and astronomy, as well as radar and communication technology, remote sensing and spectroscopy have led to a sharp increase in the investigations of electromagnetic millimeter and submillimeter waves with the lengths 10--1 and 1--0.1 mm. These volumes reflect the results of extensive research in this field and attempt to destroy stereotypes established during the long years of large-scale modeling in the millimeter and submillimeter wavelength ranges and to develop new concepts. The first volume (Open Structures) deals with the results of theoretical and experimental studies of open electrodynamic structures (open waveguides, open resonators, diffractional gratings) allowing the determination of the characteristics of various devices used in millimeter and submillimeter technology. The second volume (Sources. Element Base. Radio Systems: Novel Scientific Trends) presents the problems of creating independent units and radiosystems of the millimeter and submillimeter wavelength ranges and the justification of their physical operating principles. This includes the mechanism of generating volume waves by electron flows moving close to a grating, excitation of fields in open resonators and waveguides with inclusion, and other phenomena.

Book Mathematical Methods in Elasticity Imaging

Download or read book Mathematical Methods in Elasticity Imaging written by Habib Ammari and published by Princeton University Press. This book was released on 2015-04-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative–based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic structures, the book opens possibilities for a mathematical and numerical framework for elasticity imaging of nanoparticles and cellular structures.

Book Proceedings of the St  Petersburg Mathematical Society  Volume VIII

Download or read book Proceedings of the St Petersburg Mathematical Society Volume VIII written by N.N. Uraltseva and published by American Mathematical Soc.. This book was released on 2002-04-02 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this collection present new results in partial differential equations, numerical analysis, probability theory, and geometry. The results, ideas, and methods given in the book will be of interest to a broad range of specialists.

Book Elliptic Mixed  Transmission and Singular Crack Problems

Download or read book Elliptic Mixed Transmission and Singular Crack Problems written by Gohar Harutyunyan and published by European Mathematical Society. This book was released on 2007 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed, transmission, or crack problems belong to the analysis of boundary value problems on manifolds with singularities. The Zaremba problem with a jump between Dirichlet and Neumann conditions along an interface on the boundary is a classical example. The central theme of this book is to study mixed problems in standard Sobolev spaces as well as in weighted edge spaces where the interfaces are interpreted as edges. Parametrices and regularity of solutions are obtained within a systematic calculus of boundary value problems on manifolds with conical or edge singularities. This calculus allows singularities on the interface and homotopies between mixed and crack problems. Additional edge conditions are computed in terms of relative index results. In a detailed final chapter, the intuitive ideas of the approach are illustrated, and there is a discussion of future challenges. A special feature of the text is the inclusion of many worked-out examples which help the reader to appreciate the scope of the theory and to treat new cases of practical interest. This book is addressed to mathematicians and physicists interested in models with singularities, associated boundary value problems, and their solvability strategies based on pseudo-differential operators. The material is also useful for students in higher semesters and young researchers, as well as for experienced specialists working in analysis on manifolds with geometric singularities, the applications of index theory and spectral theory, operator algebras with symbolic structures, quantisation, and asymptotic analysis.

Book Concrete Operators  Spectral Theory  Operators in Harmonic Analysis and Approximation

Download or read book Concrete Operators Spectral Theory Operators in Harmonic Analysis and Approximation written by Manuel Cepedello Boiso and published by Springer Science & Business Media. This book was released on 2013-11-04 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a collection of research articles and surveys on recent developments on operator theory as well as its applications covered in the IWOTA 2011 conference held at Sevilla University in the summer of 2011. The topics include spectral theory, differential operators, integral operators, composition operators, Toeplitz operators, and more. The book also presents a large number of techniques in operator theory.

Book Spectral Theory and Excitation of Open Structures

Download or read book Spectral Theory and Excitation of Open Structures written by V. P. Shestopalov and published by IET. This book was released on 1996 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Open resonators, open waveguides and open diffraction gratings are used extensively in modern millimetre and submillemetre technology, spectroscopy and radio engineering. In this book, the physical processes in these open electromagnetic structures are analysed using a specially constructed spectral theory.

Book Mathematical and Computational Methods in Photonics and Phononics

Download or read book Mathematical and Computational Methods in Photonics and Phononics written by Habib Ammari and published by American Mathematical Soc.. This book was released on 2018-10-15 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fields of photonics and phononics encompass the fundamental science of light and sound propagation and interactions in complex structures, as well as its technological applications. This book reviews new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods to address challenging problems in photonics and phononics. An emphasis is placed on analyzing sub-wavelength resonators, super-focusing and super-resolution of electromagnetic and acoustic waves, photonic and phononic crystals, electromagnetic cloaking, and electromagnetic and elastic metamaterials and metasurfaces. Throughout this book, the authors demonstrate the power of layer potential techniques for solving challenging problems in photonics and phononics when they are combined with asymptotic analysis. This book might be of interest to researchers and graduate students working in the fields of applied and computational mathematics, partial differential equations, electromagnetic theory, elasticity, integral equations, and inverse and optimal design problems in photonics and phononics.

Book Function Spaces  Theory and Applications

Download or read book Function Spaces Theory and Applications written by Ilia Binder and published by Springer Nature. This book was released on 2024-01-12 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus program on Analytic Function Spaces and their Applications took place at Fields Institute from July 1st to December 31st, 2021. Hilbert spaces of analytic functions form one of the pillars of complex analysis. These spaces have a rich structure and for more than a century have been studied by many prominent mathematicians. They also have several essential applications in other fields of mathematics and engineering, e.g., robust control engineering, signal and image processing, and theory of communication. The most important Hilbert space of analytic functions is the Hardy class H2. However, its close cousins, e.g. the Bergman space A2, the Dirichlet space D, the model subspaces Kt, and the de Branges-Rovnyak spaces H(b), have also been the center of attention in the past two decades. Studying the Hilbert spaces of analytic functions and the operators acting on them, as well as their applications in other parts of mathematics or engineering were the main subjects of this program. During the program, the world leading experts on function spaces gathered and discussed the new achievements and future venues of research on analytic function spaces, their operators, and their applications in other domains. With more than 250 hours of lectures by prominent mathematicians, a wide variety of topics were covered. More explicitly, there were mini-courses and workshops on Hardy Spaces, Dirichlet Spaces, Bergman Spaces, Model Spaces, Interpolation and Sampling, Riesz Bases, Frames and Signal Processing, Bounded Mean Oscillation, de Branges-Rovnyak Spaces, Operators on Function Spaces, Truncated Toeplitz Operators, Blaschke Products and Inner Functions, Discrete and Continuous Semigroups of Composition Operators, The Corona Problem, Non-commutative Function Theory, Drury-Arveson Space, and Convergence of Scattering Data and Non-linear Fourier Transform. At the end of each week, there was a high profile colloquium talk on the current topic. The program also contained two semester-long advanced courses on Schramm Loewner Evolution and Lattice Models and Reproducing Kernel Hilbert Space of Analytic Functions. The current volume features a more detailed version of some of the talks presented during the program.

Book Solvable Algebras of Pseudodifferential Operators

Download or read book Solvable Algebras of Pseudodifferential Operators written by Boris Plamenevskii and published by Springer Nature. This book was released on 2023-05-04 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents original research results on pseudodifferential operators. C*-algebras generated by pseudodifferential operators with piecewise smooth symbols on a smooth manifold are considered. For each algebra, all the equivalence classes of irreducible representations are listed; as a consequence, a criterion for a pseudodifferential operator to be Fredholm is stated, the topology on the spectrum is described, and a solving series is constructed. Pseudodifferential operators on manifolds with edges are introduced, their properties are considered in details, and an algebra generated by the operators is studied. An introductory chapter includes all necessary preliminaries from the theory of pseudodifferential operators and C*-algebras.

Book History of Banach Spaces and Linear Operators

Download or read book History of Banach Spaces and Linear Operators written by Albrecht Pietsch and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 877 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a distinguished specialist in functional analysis, this book presents a comprehensive treatment of the history of Banach spaces and (abstract bounded) linear operators. Banach space theory is presented as a part of a broad mathematics context, using tools from such areas as set theory, topology, algebra, combinatorics, probability theory, logic, etc. Equal emphasis is given to both spaces and operators. The book may serve as a reference for researchers and as an introduction for graduate students who want to learn Banach space theory with some historical flavor.

Book Geometric Aspects of Partial Differential Equations

Download or read book Geometric Aspects of Partial Differential Equations written by Krzysztof Wojciechowski and published by American Mathematical Soc.. This book was released on 1999 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of papers by leading researchers gives a broad picture of current research directions in geometric aspects of partial differential equations. Based on lectures presented at a Minisymposium on Spectral Invariants - Heat Equation Approach, held in September 1998 at Roskilde University in Denmark, the book provides both a careful exposition of new perspectives in classical index theory and an introduction to currently active areas of the field. Presented here are new index theorems as well as new calculations of the eta-invariant, of the spectral flow, of the Maslov index, of Seiberg-Witten monopoles, heat kernels, determinants, non-commutative residues, and of the Ray-Singer torsion. New types of boundary value problems for operators of Dirac type and generalizations to manifolds with cuspidal ends, to non-compact and to infinite-dimensional manifolds are also discussed. Throughout the book, the use of advanced analysis methods for gaining geometric insight emerges as a central theme. Aimed at graduate students and researchers, this book would be suitable as a text for an advanced graduate topics course on geometric aspects of partial differential equations and spectral invariants.

Book Waves and Boundary Problems

Download or read book Waves and Boundary Problems written by Sergey G. Glebov and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-06-11 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second volume of Nonlinear Equations with Small Parameter containing new methods of construction of global asymptotics of solutions to nonlinear equations with small parameter. They allow one to match asymptotics of various properties with each other in transition regions and to get unified formulas for connection of characteristic parameters of approximate solutions. This approach underlies modern asymptotic methods and gives a deep insight into crucial nonlinear phenomena. These are beginnings of chaos in dynamical systems, incipient solitary and shock waves, oscillatory processes in crystals, engineering constructions and quantum systems. Apart from independent interest the approximate solutions serve as a foolproof basis for testing numerical algorithms. The second volume will be related to partial differential equations.

Book Spectral Problems in Geometry and Arithmetic

Download or read book Spectral Problems in Geometry and Arithmetic written by Thomas Branson and published by American Mathematical Soc.. This book was released on 1999 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: These are the proceedings of the NSF-CBMS Conference on "Spectral Problems in Geometry and Arithmetic" held at the University of Iowa. The principal speaker was Peter Sarnak, who has been a central contributor to developments in this field. The volume approaches the topic from the geometric, physical, and number theoretic points of view. The remarkable new connections among seemingly disparate mathematical and scientific disciplines have surprised even veterans of the physical mathematics renaissance forged by gauge theory in the 1970s. Numerical experiments show that the local spacing between zeros of the Riemann zeta function is modelled by spectral phenomena: the eigenvalue distributions of random matrix theory, in particular the Gaussian unitary ensemble (GUE). Related phenomena are from the point of view of differential geometry and global harmonic analysis. Elliptic operators on manifolds have (through zeta function regularization) functional determinants, which are related to functional integrals in quantum theory. The search for critical points of this determinant brings about extremely subtle and delicate sharp inequalities of exponential type. This indicates that zeta functions are spectral objects-and even physical objects. This volume demonstrates that zeta functions are also dynamic, chaotic, and more.