EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book MEMS Resonator Filters

Download or read book MEMS Resonator Filters written by Rajendra M. Patrikar and published by Institution of Engineering and Technology. This book was released on 2020-06-15 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of MEMS resonators for signal processing is relatively new and has the potential to change the topology of newer generation circuits. New materials, design and fabrication processes, and integration with conventional circuitry will need to be considered. This book explores the challenges and opportunities of developing circuits with MEMS resonator filters. The replacement of classical electrical components with electromechanical components is explored in this book, and the specific properties of MEMS resonators required in various frequency ranges are discussed. Materials and their selection, CAD tools for system design and the integration of MEMS with CMOS circuitry, and the design, fabrication, testing and packaging of MEMS filters themselves are addressed in detail. Case studies where resonator MEMS have been used as components have been included to encourage readers to consider the practical applications of this technology. MEMS Resonator Filters is essential reading for the analogue circuit designer community, particularly those who are designing circuits for wireless communications, and CMOS technology researchers and engineers who are involved in the fabrication of circuits. Designers of sensors and interfacing circuits will also be interested since resonators are also being used as sensors.

Book Frequency Tunable MEMS Based Timing Oscillators and Narrowband Filters

Download or read book Frequency Tunable MEMS Based Timing Oscillators and Narrowband Filters written by Henry Galahad Barrow and published by . This book was released on 2015 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is little question that the commercial success of smartphones has substantially increased the volume of products utilizing Micro Electro Mechanical Systems (MEMS) technology, especially accelerometers, gyroscopes, bandpass filters, and microphones. The Internet of Things (IoT), a more recent driver for small, low power microsystems, seems poised to provide an even bigger market for these and other potential products based on MEMS. Given that the IoT will likely depend heavily on massive sensor networks using nodes for which battery replacement might not be practical, cost and power consumption become even more important. As already known for existing sensor networks, sleep/wake cycles will likely be instrumental to maintaining low sensor node power consumption in the IoT, and if so, then the clocks that must continuously run to synchronize sleep/wake events often become the bottlenecks to ultimate power consumption. On the communications side, narrowband RF channel-selecting front-end filters stand to greatly reduce receive power consumption by relaxing transistor circuit dynamic ranges. Both the accuracy of the clocks and ability of filters to achieve bandwidths small enough to select individual channels depend heavily on the accuracy and precision to which the frequency-setting devices they rely on are constructed. Inevitably, fabrication tolerances are finite, which means the ability to attain the highest performance relies on trimming or tuning. This dissertation focuses on methods by which voltage-controlled frequency tuning of capacitively-transduced micromechanical resonators make possible 1) an ultra-compact, low-power 32.768-kHz micromechanical clock oscillator; and 2) a high-order, small percent bandwidth coupled-resonator filter with minimal passband distortion. Currently, quartz crystal-based oscillators at 32.768 kHz dominate the market because they offer the best combination of cost and performance. However, the physical dimensions of these oscillators are presently too large for future small form-factor electronic applications, such as ones that fit within credit cards. While there have been attempts to shrink quartz resonating elements, the increasingly difficult fabrication steps required to produce such devices raises manufacturing costs, thereby preventing widespread adoption (so far). In addition, quartz crystal motional resistance values typically increase as resonator dimensions shrink, which in many oscillator configurations raises power consumption. Unlike common quartz resonators, properly designed MEMS resonators benefit greatly from scaling in that reductions in lateral dimensions lead to a rapid decrease in motional resistance by a square law. The work described herein harnesses these scaling advantages to realize an oscillator much smaller than quartz-based oscillators with potential for much less power consumption. Specifically, this work uses aggressive lithography to achieve a capacitive-comb transduced micromechanical resonator occupying only 0.0154 mm2 of die area. Wire bonding this resonator to a custom sustaining amplifier and a supply voltage of only 1.65V then realizes a 32.768-kHz real-time clock oscillator more than 100× smaller by area than miniaturized quartz crystal implementations and at least 4× smaller than other MEMS-based approaches. The use of voltage-controlled tuning Oscillations sustains with only 2.1 [mu]W of power consumption. On the filter front, whether realized using quartz, FBAR, or capacitive-gap transduced MEMS resonator, mechanical filter responses are only as flat as the accuracy of their constituent resonator center frequencies. While narrowband micromechanical filters comprised of up to three mechanically coupled resonators have been demonstrated in the past, there exists a demand for bandpass filters with even sharper roll-offs and larger stopband rejections, and this requires higher order filters utilizing more than three coupled resonators. The work herein demonstrates filters comprised of four coupled resonators with bandwidths narrow enough to select individual channels. Before correction, filter passbands fresh out of the fab look nothing like their intended responses. Application of the automated passband correction protocol of this work, based on voltage-controlled frequency tuning, permits measurement of a 4-resonator micromechanical filter with a 0.1% bandwidth commensurate with the needs of channel-selection (albeit at a low frequency) and an impressive 20-dB shape factor of 1.59, all with less than 3dB of additional passband ripple (beyond the design ripple).

Book Piezoelectric MEMS Resonators

Download or read book Piezoelectric MEMS Resonators written by Harmeet Bhugra and published by Springer. This book was released on 2017-01-09 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associated with testing and qualification Examples of commercialization paths for piezoelectric MEMS resonators in the timing and the filter markets ...and more! The authors present industry and academic perspectives, making this book ideal for engineers, graduate students, and researchers.

Book Piezoelectric MEMS Resonator Characterization and Filter Design

Download or read book Piezoelectric MEMS Resonator Characterization and Filter Design written by Joung-Mo Kang and published by . This book was released on 2004 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: (Cont.) The filter analyses bring to light two major goals for the next stage of resonator development. First, an accurate tuning method must be devised as the resonator bar's small size makes manufacturing errors on the order of tens of nanometers significantly affect filter characteristics. Second, a lower impedance level for the resonator is desirable to allow robust interaction with integrated RF circuitry.

Book 3D and Circuit Integration of MEMS

Download or read book 3D and Circuit Integration of MEMS written by Masayoshi Esashi and published by John Wiley & Sons. This book was released on 2021-07-19 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3D and Circuit Integration of MEMS Explore heterogeneous circuit integration and the packaging needed for practical applications of microsystems MEMS and system integration are important building blocks for the “More-Than-Moore” paradigm described in the International Technology Roadmap for Semiconductors. And, in 3D and Circuit Integration of MEMS, distinguished editor Dr. Masayoshi Esashi delivers a comprehensive and systematic exploration of the technologies for microsystem packaging and heterogeneous integration. The book focuses on the silicon MEMS that have been used extensively and the technologies surrounding system integration. You’ll learn about topics as varied as bulk micromachining, surface micromachining, CMOS-MEMS, wafer interconnection, wafer bonding, and sealing. Highly relevant for researchers involved in microsystem technologies, the book is also ideal for anyone working in the microsystems industry. It demonstrates the key technologies that will assist researchers and professionals deal with current and future application bottlenecks. Readers will also benefit from the inclusion of: A thorough introduction to enhanced bulk micromachining on MIS process, including pressure sensor fabrication and the extension of MIS process for various advanced MEMS devices An exploration of epitaxial poly Si surface micromachining, including process condition of epi-poly Si, and MEMS devices using epi-poly Si Practical discussions of Poly SiGe surface micromachining, including SiGe deposition and LP CVD polycrystalline SiGe A concise treatment of heterogeneously integrated aluminum nitride MEMS resonators and filters Perfect for materials scientists, electronics engineers, and electrical and mechanical engineers, 3D and Circuit Integration of MEMS will also earn a place in the libraries of semiconductor physicists seeking a one-stop reference for circuit integration and the practical application of microsystems.

Book MEMS Linear and Nonlinear Statics and Dynamics

Download or read book MEMS Linear and Nonlinear Statics and Dynamics written by Mohammad I. Younis and published by Springer Science & Business Media. This book was released on 2011-06-27 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of numerous MEMS devices and structures that require static or dynamic modeling Provides code for programs in Matlab, Mathematica, and ANSYS for simulating the behavior of MEMS structures Provides real world problems related to the dynamics of MEMS such as dynamics of electrostatically actuated devices, stiction and adhesion of microbeams due to electrostatic and capillary forces MEMS Linear and Nonlinear Statics and Dynamics is an ideal volume for researchers and engineers working in MEMS design and fabrication.

Book Resonant MEMS

Download or read book Resonant MEMS written by Oliver Brand and published by John Wiley & Sons. This book was released on 2015-06-08 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.

Book Piezoelectric Aluminum Nitride MEMS Resonators for RF Signal Processing

Download or read book Piezoelectric Aluminum Nitride MEMS Resonators for RF Signal Processing written by Philip Jason Stephanou and published by . This book was released on 2006 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanically Tunable RF Microwave Filters

Download or read book Mechanically Tunable RF Microwave Filters written by Dong Yan and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book MEMS

    Book Details:
  • Author : Vikas Choudhary
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 135183228X
  • Pages : 481 pages

Download or read book MEMS written by Vikas Choudhary and published by CRC Press. This book was released on 2017-12-19 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: The microelectromechanical systems (MEMS) industry has experienced explosive growth over the last decade. Applications range from accelerometers and gyroscopes used in automotive safety to high-precision on-chip integrated oscillators for reference generation and mobile phones. MEMS: Fundamental Technology and Applications brings together groundbreaking research in MEMS technology and explores an eclectic set of novel applications enabled by the technology. The book features contributions by top experts from industry and academia from around the world. The contributors explain the theoretical background and supply practical insights on applying the technology. From the historical evolution of nano micro systems to recent trends, they delve into topics including: Thin-film integrated passives as an alternative to discrete passives The possibility of piezoelectric MEMS Solutions for MEMS gyroscopes Advanced interconnect technologies Ambient energy harvesting Bulk acoustic wave resonators Ultrasonic receiver arrays using MEMS sensors Optical MEMS-based spectrometers The integration of MEMS resonators with conventional circuitry A wearable inertial and magnetic MEMS sensor assembly to estimate rigid body movement patterns Wireless microactuators to enable implantable MEMS devices for drug delivery MEMS technologies for tactile sensing and actuation in robotics MEMS-based micro hot-plate devices Inertial measurement units with integrated wireless circuitry to enable convenient, continuous monitoring Sensors using passive acousto-electric devices in wired and wireless systems Throughout, the contributors identify challenges and pose questions that need to be resolved, paving the way for new applications. Offering a wide view of the MEMS landscape, this is an invaluable resource for anyone working to develop and commercialize MEMS applications.

Book MEMS based Circuits and Systems for Wireless Communication

Download or read book MEMS based Circuits and Systems for Wireless Communication written by Christian C Enz and published by Springer Science & Business Media. This book was released on 2012-08-21 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: MEMS-based Circuits and Systems for Wireless Communications provides comprehensive coverage of RF-MEMS technology from device to system level. This edited volume places emphasis on how system performance for radio frequency applications can be leveraged by Micro-Electro-Mechanical Systems (MEMS). Coverage also extends to innovative MEMS-aware radio architectures that push the potential of MEMS technology further ahead. This work presents a broad overview of the technology from MEMS devices (mainly BAW and Si MEMS resonators) to basic circuits, such as oscillators and filters, and finally complete systems such as ultra-low-power MEMS-based radios. Contributions from leading experts around the world are organized in three parts. Part I introduces RF-MEMS technology, devices and modeling and includes a prospective outlook on ongoing developments towards Nano-Electro-Mechanical Systems (NEMS) and phononic crystals. Device properties and models are presented in a circuit oriented perspective. Part II focusses on design of electronic circuits incorporating MEMS. Circuit design techniques specific to MEMS resonators are applied to oscillators and active filters. In Part III contributors discuss how MEMS can advantageously be used in radios to increase their miniaturization and reduce their power consumption. RF systems built around MEMS components such as MEMS-based frequency synthesis including all-digital PLLs, ultra-low power MEMS-based communication systems and a MEMS-based automotive wireless sensor node are described.

Book Acoustic Wave and Electromechanical Resonators

Download or read book Acoustic Wave and Electromechanical Resonators written by Humberto Campanella and published by Artech House. This book was released on 2010 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This groundbreaking book provides you with a comprehensive understanding of FBAR (thin-film bulk acoustic wave resonator), MEMS (microelectomechanical system), and NEMS (nanoelectromechanical system) resonators. For the first time anywhere, you find extensive coverage of these devices at both the technology and application levels. This practical reference offers you guidance in design, fabrication, and characterization of FBARs, MEMS and NEBS. It discusses the integration of these devices with standard CMOS (complementary-metal-oxide-semiconductor) technologies, and their application to sensing and RF systems. Moreover, this one-stop resource looks at the main characteristics, differences, and limitations of FBAR, MEMS, and NEMS devices, helping you to choose the right approaches for your projects. Over 280 illustrations and more than 130 equations support key topics throughout the book.

Book Microelectromechanical Resonators and Filters for Communications Applications

Download or read book Microelectromechanical Resonators and Filters for Communications Applications written by Kun Wang and published by . This book was released on 1999 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design of Width extensional  Piezoelectric Radio Frequency Microelectromechanical System Resonators and Filters

Download or read book Design of Width extensional Piezoelectric Radio Frequency Microelectromechanical System Resonators and Filters written by Jonathan A. Cox and published by . This book was released on 2007 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Existing width-extensional, piezoelectric resonators (LBARs) suffer from high motional resistance and susceptibility to manufacturing disorder. Attempts to lower motional resistance by connecting many LBARs electrically in parallel fail because such schemes are highly susceptible to the disorder inherent in the fabrication process. The manufacturing precision, not the minimum feature size, presently limits the maximum frequency for which a resonator or filter array can be fabricated. However, the effect of disorder in a group of resonators can be reduced with mechanical coupling. Therefore, we present a novel approach that is disorder tolerant, allowing for the fabrication of higher frequency, lower impedance LBAR-based resonators and filters. This novel resonator defeats the aspect ratio limitations imposed by the Poisson effect through stress-relieving slits. By etching narrow slits in a long bar, it is constrained to act as a single LBAR-without the spurious modes which would otherwise result. In addition, the admittance of the new array scales well with the number of unit cells, permitting the length of the array to be extended in one or two dimensions until the motional resistance is reduced to an adequate level. Finite element analysis techniques for disorder simulation and filter design are explored. Radiated acoustic power (anchor loss) is analyzed with finite element simulations with absorbing boundaries. Finally, a thorough discussion of filter design with the new resonator array, as well as a comparison of various filter topologies, is conducted.

Book Filter Design for Satellite Communications  Helical Resonator Technology

Download or read book Filter Design for Satellite Communications Helical Resonator Technology written by Efstratios Doumanis and published by Artech House. This book was released on 2015-01-01 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book primarily addresses the needs of practicing RF and microwave engineers engaged with the design of distributed filters for telecommunication and sensing applications, with particular emphasis on the space sector. This is a contemporary and comprehensive approach to the design of microwave filters with helical resonators. The very detailed step-by-step approach used throughout the book allows you to quickly familiarize with the basic concepts of microwave filter design and confidently engage with the design of helical resonator filters. In particular, several examples that present the design of filters for a wide frequency and applications range would provide a very useful tool at hand for the filter designer. Presenting you with cutting-edge design guidance, this is a complete reference for helical filter design.

Book Microwave Filters for Communication Systems

Download or read book Microwave Filters for Communication Systems written by Richard J. Cameron and published by John Wiley & Sons. This book was released on 2018-04-03 with total page 900 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth look at the state-of-the-art in microwave filter design, implementation, and optimization Thoroughly revised and expanded, this second edition of the popular reference addresses the many important advances that have taken place in the field since the publication of the first edition and includes new chapters on Multiband Filters, Tunable Filters and a chapter devoted to Practical Considerations and Examples. One of the chief constraints in the evolution of wireless communication systems is the scarcity of the available frequency spectrum, thus making frequency spectrum a primary resource to be judiciously shared and optimally utilized. This fundamental limitation, along with atmospheric conditions and interference have long been drivers of intense research and development in the fields of signal processing and filter networks, the two technologies that govern the information capacity of a given frequency spectrum. Written by distinguished experts with a combined century of industrial and academic experience in the field, Microwave Filters for Communication Systems: Provides a coherent, accessible description of system requirements and constraints for microwave filters Covers fundamental considerations in the theory and design of microwave filters and the use of EM techniques to analyze and optimize filter structures Chapters on Multiband Filters and Tunable Filters address the new markets emerging for wireless communication systems and flexible satellite payloads and A chapter devoted to real-world examples and exercises that allow readers to test and fine-tune their grasp of the material covered in various chapters, in effect it provides the roadmap to develop a software laboratory, to analyze, design, and perform system level tradeoffs including EM based tolerance and sensitivity analysis for microwave filters and multiplexers for practical applications. Microwave Filters for Communication Systems provides students and practitioners alike with a solid grounding in the theoretical underpinnings of practical microwave filter and its physical realization using state-of-the-art EM-based techniques.

Book Resonant MEMS

Download or read book Resonant MEMS written by Oliver Brand and published by John Wiley & Sons. This book was released on 2015-04-22 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.