EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mechanistic empirical Pavement Design Guide

Download or read book Mechanistic empirical Pavement Design Guide written by American Association of State Highway and Transportation Officials and published by AASHTO. This book was released on 2008 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanistic empirical Flexible Pavement Thickness Design

Download or read book Mechanistic empirical Flexible Pavement Thickness Design written by David Harold Timm and published by . This book was released on 1999 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report documents the development of a mechanistic-empirical (M-E) flexible pavement thickness design method for use in Minnesota. The report includes a comprehensive literature review of the state of the practice. The Minnesota Road Research Project (Mn/ROAD) served as the primary source of data, in addition to information from the literature, during the development of the method.

Book AASHTO Guide for Design of Pavement Structures  1993

Download or read book AASHTO Guide for Design of Pavement Structures 1993 written by American Association of State Highway and Transportation Officials and published by AASHTO. This book was released on 1993 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.

Book Guide for the Local Calibration of the Mechanistic empirical Pavement Design Guide

Download or read book Guide for the Local Calibration of the Mechanistic empirical Pavement Design Guide written by and published by AASHTO. This book was released on 2010 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.

Book Development of a Flexible Pavement Design Procedure Based on the Mechanistic empirical Pavement Design Guide

Download or read book Development of a Flexible Pavement Design Procedure Based on the Mechanistic empirical Pavement Design Guide written by Ali Qays Abdullah and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This research developed design tables of new flexible pavement structures for New York State Department of Transportation based on the Mechanistic Empirical Design Guide (MEPDG). The design tables were developed using the MEPDG software for Regions 1, 3, and 7 for Upstate part of New York State and for Regions 8, 10, and 11 for the Downstate part of New York State. The MEPDG software was used to run design cases for combinations of: climate conditions, traffic volume, subgrade soil stiffness (Mr) and pavement structures. The conditions that the MEPDG was used to run were: the road structures classified as Principal Arterial Interstate, design 95%reliability level, 15 and 20 year analysis period. Weight in Motion (WIM) data of Region 7 were used for Region 1 and 2, also WIM data of Region 8 were used for Region 10 and 11. Climatic data specifically for each region were used. The NYSDOT's Comprehensive Pavement Design Manual (CPDM) was initially used to obtain pavement design solutions for Region 7 and 8. The granular subbase materials and thicknesses recommended by CPDM were used but only the asphalt layer thicknesses was varied to include several values higher and lower than the thickness recommended by CPDM. The thickness of asphalt binder and surface layers were kept constant. Only the thickness of the base layer was changed. For each design combination, the design case with thinnest asphalt layer for which the predicted distress was less the performance criteria was selected as the design solution. The design solutions for Regions 7 and 8 were assembled in design tables. The examination of the design tables proved that, in general, Region 7 requires thicker pavement structures than Region 8 for same Annual Average Daily Truck Traffic (AADTT) and Resilient Modulus. In the second phase, the MEPDG was used to run for Region 1, 3, 10, 11. The design solutions were tabulated first to produce the design tables for each design case. Since it was expected that the climate changing has no effects on the design solutions for the regions which belong to the same New York State part, the design tables of Region 7 were compared with the design tables of Regions 1 and 3. In addition, the design tables of Region 8 were compared with those obtained for Regions 10 and 11. The comparisons proved that the change in location within the same part of New York State affects the design solution for the same combination of subgrade soil stiffness and truck traffic volume. In the third phase, the design tables for 80% design reliability were produced for each selected region. The design tables which were developed by this study provide flexibility to the designer to design the new flexible pavement structure. The designer should select the subgrade (Mr), AADTT, design life, and the design reliability; then, the design solution could be obtained directly from the tables.

Book Mechanistic empirical Pavement Thickness Design

Download or read book Mechanistic empirical Pavement Thickness Design written by David H. Timm and published by . This book was released on 1999 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Flexible Pavement Design

Download or read book Flexible Pavement Design written by Ashraf Ayman Aguib and published by . This book was released on 2014 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: The new Mechanistic-Empirical Pavement Design Guide (MEPDG) provides a state- of-the-art and practice pavement design procedure that eradicates the AASHTO 1993 empirical design procedure deficiencies. Huge advancements with respect to traffic input, material characterization and environmental impact are incorporated in the MEPDG. The AASHTO 1993 design procedure is based on empirical equations derived from the AASHO Road Test conducted in the late 1950's in a test track in Ottawa, Illinois. The test provided very useful information for the design of pavement at that time. However, with the present advancement in materials and dramatic increase in traffic volumes, this empirical design procedure started to show massive drawbacks. The MEPDG is a more comprehensive design procedure that incorporates sophisticated models for pavement response calculation, material properties variations with respect to environmental conditions and pavement performance predictions. The mechanistic part of the design procedure is the pavement response calculation and the empirical part of the method is the pavement performance prediction. Incorporating these models allows the MEPDG of producing pavement design sections that are cost-effective and perform better than those designed using the AASHTO 1993 design procedure for a given life span. With the initial introduction of the MEPDG in 2004, almost every State Highway Agency (SHA) in the United States and several road authorities around the world exerted efforts to understand and plan to implement the MEPDG according to their own local conditions. It was hence found necessary to explore the new design procedure according to Egyptian local conditions. The objectives of the research is to prepare a body of accurate and readily usable environmental data for Egypt for MEPDG input, compare the effectiveness of both design methods and assess the sensitivity of MEPDG predicted performance with respect to variations in inputs. Weather data files for major Egyptian cities were extracted from available data sources and prepared for direct input in the MEPDG. The preparation of data was done using a computer application especially developed in this research program to comprehensively and rationally complete this task. A comparative study was then done between the two design methods. Five pavement sections were designed using the AASHTO 1993 design procedure and then evaluated using the MEPDG for three traffic levels. These five sections were chosen to best represent the majority of Egypt. A sensitivity analysis was then conducted to investigate the predicted behavior of fatigue cracking and rutting with respect to variations in environmental conditions, traffic levels, AC layer thickness and properties, granular base (GB) layer thickness and subgrade strength. Comparing both design methods revealed that pavements designed under the AASHTO 1993 do not perform equally at the end of their design life. Terminal Present Serviceability Index (PSI) values are different for different traffic levels and locations. Predicted fatigue cracking and rutting showed a similar trend to terminal PSI values. The AASHTO 1993 was also found to over-estimate pavement layers thicknesses. Predicted fatigue cracking showed high sensitivity to design inputs under the scope of the study. Environmental conditions and traffic loading were also found to be the most influential input parameters on the selected pavement performance indices. Unexpected results for predicted rutting lead to further investigation and MEDPG rutting prediction model was evaluated with respect to an Egyptian rutting prediction model. Rutting prediction model adopted by MEPDG produced lower values for permanent strain compare to the Egyptian rutting model and further calibration for the MEPDG rutting prediction model was found necessary.

Book Efficient Pavement Thickness Design for Indiana

Download or read book Efficient Pavement Thickness Design for Indiana written by Tommy Nantung and published by . This book was released on 2018-08-15 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past several decades, a dramatic increase in traffic volume, axle loads, and tire pressure has led to rapidly deteriorated pavements in the United States. Several types of pavement surface distresses have been noted by many state agencies across the country. Among these distresses, permanent deformation, also known as rutting, is one of the most serious forms of flexible pavement distress. This research investigates the fundamentals of rutting behavior for full-depth flexible pavements. The scope incorporates an experimental study using full-scale accelerated pavement tests (APTs) to monitor the evolution of the transverse profiles of each pavement structural layer. The findings were then employed to improve the rutting model that is embedded in the current pavement design method, the Mechanistic-Empirical Pavement Design Guide (MEPDG).Four APT sections were constructed using two typical pavement structures and two types of surface course material. A mid-depth rut monitoring and automated laser profile system was designed to reconstruct the transverse profiles at each pavement layer interface throughout the process of accelerated pavement deterioration that is produced during the APT. The contributions of each pavement structural layer to rutting and the evolution of layer deformation were derived. This study found that the permanent deformation within asphalt concrete does not increase with an increase in pavement thickness once the pavement is sufficiently thick. Additionally, most pavement rutting is caused by the deformation of the asphalt concrete, with about half the amount of rutting observed within the top four inches of the pavement layers and only around ten percent of rutting observed in the subgrade.A guideline was developed to calibrate the MEPDG prediction models using a database that contains both APT sections and field roadway segments and accounts for the rutting in individual pavement layers. A procedure was developed to provide the most faithful simulations of the APT conditions using virtual weather station generation, special traffic configuration, and falling weight deflectometer evaluation. New calibration factors of the MPEGD rutting model from this study have been successfully implemented by the INDOT design team since 2017.

Book Development of a Simplified Flexible Pavement Design Protocol for New York State Department of Transportation Based on the AASHTO Mechanistic empirical Pavement Design Guide

Download or read book Development of a Simplified Flexible Pavement Design Protocol for New York State Department of Transportation Based on the AASHTO Mechanistic empirical Pavement Design Guide written by Stefan Anton Romanoschi and published by . This book was released on 2017 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: The New York State Department of Transportation (NYSDOT) has used the AASHTO 1993 Design Guide for the design of new flexible pavement structures for more than two decades. The AASHTO 1993 Guide is based on the empirical design equations developed from the data collected in the AASHO Road Test in the early 1960s. A newer pavement design method, called the Mechanistic-Empirical Pavement Design Guide (MEPDG), was developed by the National Cooperative Highway Research Program (NCHRP) to provide a more efficient and accurate design method that is based on sound engineering principles. The MEPDG models have been incorporated in the AASHTOWare Pavement ME Design 2.1 software program. Due to the advanced principles and design capabilities of the AASHTOWare program, NYSDOT decided to implement the MEPDG and calibrate the distress models included in the software for the conditions in the state. This report summarizes the local calibration of the distress models for the Northeast (NE) region of the United States and the development of new design tables for new flexible pavement structures. Design, performance, and traffic data collected on the Long-Term Pavement Performance (LTPP) sites in the NE region of the United States were used to calibrate the distress models. First, the AASHTOWare Pavement ME Design 2.1 with global calibration factors was used to compare the predicted and measured distress values. The local bias was assessed for all distress models except for the longitudinal cracking model; it was found the bias existed for this model even after calibration. The thermal cracking model was not calibrated because of inaccurate measured data. The calibration improved the prediction capability of the rutting, fatigue cracking, and smoothness prediction models. The calibrated AASHTOWare software was used to run design cases for combinations of traffic volume and subgrade soil stiffness (resilient modulus, Mr) for 24 locations in the state of New York. The runs were performed for a road classified as Principal Arterial Interstate, 90% design reliability level, and 15- and 20-year design periods. State-wide average traffic volume parameters and axle load spectra were used to define the traffic. The configuration specified in the current design table used by NYSDOT, which is included in the Comprehensive Pavement Design Manual (CPDM), was followed for the pavement design solutions. The thicknesses for the select granular subgrade materials and the asphalt layer thicknesses were varied to include several values higher and lower than the thickness recommended by the CPDM. The thicknesses of asphalt surface and binder layers were kept constant; only the thickness of the asphalt base layer was changed. For each design combination, the design case with the thinnest asphalt layer for which the predicted distress was less than the performance criteria was selected as the design solution. The design solutions for each of the 24 locations were assembled in design tables. The comparison of the design tables showed that some variation in the design thickness for the asphalt layers exists with thicker asphalt layers being needed for the locations in the upper part of the New York State. The comparison between the new design tables and the table included in the CPDM proved that the new design tables require thinner asphalt layers at low Annual Average Daily Truck Traffic (AADTT) and thicker asphalt layers at high AADTT than the corresponding designs in the CPDM table.

Book Independent Review of the  Mechanistic empirical Pavement Design Guide  and Software

Download or read book Independent Review of the Mechanistic empirical Pavement Design Guide and Software written by and published by . This book was released on 2006 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This digest summarizes key findings from NCHRP Project 1-40A ... Part I ... was prepared by Stephen F. Brown, Scott Wilson Pavement Engineering, Ltd.; Part II was prepared by Michael M. Darter .... Applied Research Associates, Inc. ... [et al.]"--P. [1].

Book Pavement Design and Materials

Download or read book Pavement Design and Materials written by A. T. Papagiannakis and published by John Wiley & Sons. This book was released on 2017-02-22 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, state-of-the-art guide to pavement design and materials With innovations ranging from the advent of SuperpaveTM, the data generated by the Long Term Pavement Performance (LTPP) project, to the recent release of the Mechanistic-Empirical pavement design guide developed under NCHRP Study 1-37A, the field of pavement engineering is experiencing significant development. Pavement Design and Materials is a practical reference for both students and practicing engineers that explores all the aspects of pavement engineering, including materials, analysis, design, evaluation, and economic analysis. Historically, numerous techniques have been applied by a multitude of jurisdictions dealing with roadway pavements. This book focuses on the best-established, currently applicable techniques available. Pavement Design and Materials offers complete coverage of: The characterization of traffic input The characterization of pavement bases/subgrades and aggregates Asphalt binder and asphalt concrete characterization Portland cement and concrete characterization Analysis of flexible and rigid pavements Pavement evaluation Environmental effects on pavements The design of flexible and rigid pavements Pavement rehabilitation Economic analysis of alternative pavement designs The coverage is accompanied by suggestions for software for implementing various analytical techniques described in these chapters. These tools are easily accessible through the book’s companion Web site, which is constantly updated to ensure that the reader finds the most up-to-date software available.

Book Implementation of the Florida Cracking Model Into the Mechanistic empirical Pavement Design

Download or read book Implementation of the Florida Cracking Model Into the Mechanistic empirical Pavement Design written by Björn Birgisson and published by . This book was released on 2006 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is important to accomodate top-down cracking in the design of asphalt mixtures and pavement structures. This report presents the implementation of the Florida cracking model into a mechanistic-empirical (ME) flexible pavement design framework. Based on the Energy Ratio (ER) concept, a new ME pavement design tool for top-down cracking has been developed. This design tool has been developed into an interactive Window-based software, making it convenient to use for Florida pavement design engineers.

Book Mechanistic Empirical Pavement Design Guide

Download or read book Mechanistic Empirical Pavement Design Guide written by Meng Chong Lee and published by . This book was released on 2004 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: