Download or read book Mechanisms of Radiation Effects in Electronic Materials written by V. A. J. Van Lint and published by John Wiley & Sons. This book was released on 1980 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mechanisms of Radiation Effects in Electronic Materials written by and published by . This book was released on 1980 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Radiation Effects in Advanced Semiconductor Materials and Devices written by C. Claeys and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This wide-ranging book summarizes the current knowledge of radiation defects in semiconductors, outlining the shortcomings of present experimental and modelling techniques and giving an outlook on future developments. It also provides information on the application of sensors in nuclear power plants.
Download or read book Ionizing Radiation Effects in Electronics written by Marta Bagatin and published by CRC Press. This book was released on 2018-09-03 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ionizing Radiation Effects in Electronics: From Memories to Imagers delivers comprehensive coverage of the effects of ionizing radiation on state-of-the-art semiconductor devices. The book also offers valuable insight into modern radiation-hardening techniques. The text begins by providing important background information on radiation effects, their underlying mechanisms, and the use of Monte Carlo techniques to simulate radiation transport and the effects of radiation on electronics. The book then: Explains the effects of radiation on digital commercial devices, including microprocessors and volatile and nonvolatile memories—static random-access memories (SRAMs), dynamic random-access memories (DRAMs), and Flash memories Examines issues like soft errors, total dose, and displacement damage, together with hardening-by-design solutions for digital circuits, field-programmable gate arrays (FPGAs), and mixed-analog circuits Explores the effects of radiation on fiber optics and imager devices such as complementary metal-oxide-semiconductor (CMOS) sensors and charge-coupled devices (CCDs) Featuring real-world examples, case studies, extensive references, and contributions from leading experts in industry and academia, Ionizing Radiation Effects in Electronics: From Memories to Imagers is suitable both for newcomers who want to become familiar with radiation effects and for radiation experts who are looking for more advanced material or to make effective use of beam time.
Download or read book Reliability and Failure of Electronic Materials and Devices written by Milton Ohring and published by Academic Press. This book was released on 2014-10-14 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites
Download or read book Testing at the Speed of Light written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2018-06-08 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spacecraft depend on electronic components that must perform reliably over missions measured in years and decades. Space radiation is a primary source of degradation, reliability issues, and potentially failure for these electronic components. Although simulation and modeling are valuable for understanding the radiation risk to microelectronics, there is no substitute for testing, and an increased use of commercial-off-the- shelf parts in spacecraft may actually increase requirements for testing, as opposed to simulation and modeling. Testing at the Speed of Light evaluates the nation's current capabilities and future needs for testing the effects of space radiation on microelectronics to ensure mission success and makes recommendations on how to provide effective stewardship of the necessary radiation test infrastructure for the foreseeable future.
Download or read book Reliability And Radiation Effects In Compound Semiconductors written by Allan H Johnston and published by World Scientific. This book was released on 2010-04-27 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. It starts with first principles, and shows how advances in device design and manufacturing have suppressed many of the older reliability mechanisms.It is the first book that comprehensively covers reliability and radiation effects in optoelectronic as well as microelectronic devices. It contrasts reliability mechanisms of compound semiconductors with those of silicon-based devices, and shows that the reliability of many compound semiconductors has improved to the level where they can be used for ten years or more with low failure rates.
Download or read book Ionizing Radiation Effects in MOS Oxides written by Timothy R. Oldham and published by World Scientific. This book was released on 1999 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is intended to serve as an updated critical guide to the extensive literature on the basic physical mechanisms controlling the radiation and reliability responses of MOS oxides. The last such guide was Ionizing Radiation Effects in MOS Devices and Circuits, edited by Ma and Dressendorfer and published in 1989. While that book remains an authoritative reference in many areas, there has been a significant amount of more recent work on the nature of the electrically active defects in MOS oxides which are generated by exposure to ionizing radiation. These same defects are also critical in many other areas of oxide reliability research. As a result of this work, the understanding of the basic physical mechanisms has evolved. This book summarizes the new work and integrates it with older work to form a coherent, unified picture. It is aimed primarily at specialists working on radiation effects and oxide reliability.
Download or read book Integrated Circuit Design for Radiation Environments written by Stephen J. Gaul and published by John Wiley & Sons. This book was released on 2019-12-03 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to the effects of radiation on semiconductor components of electronic systems, and techniques for the designing, laying out, and testing of hardened integrated circuits This book teaches the fundamentals of radiation environments and their effects on electronic components, as well as how to design, lay out, and test cost-effective hardened semiconductor chips not only for today’s space systems but for commercial terrestrial applications as well. It provides a historical perspective, the fundamental science of radiation, and the basics of semiconductors, as well as radiation-induced failure mechanisms in semiconductor chips. Integrated Circuits Design for Radiation Environments starts by introducing readers to semiconductors and radiation environments (including space, atmospheric, and terrestrial environments) followed by circuit design and layout. The book introduces radiation effects phenomena including single-event effects, total ionizing dose damage and displacement damage) and shows how technological solutions can address both phenomena. Describes the fundamentals of radiation environments and their effects on electronic components Teaches readers how to design, lay out and test cost-effective hardened semiconductor chips for space systems and commercial terrestrial applications Covers natural and man-made radiation environments, space systems and commercial terrestrial applications Provides up-to-date coverage of state-of-the-art of radiation hardening technology in one concise volume Includes questions and answers for the reader to test their knowledge Integrated Circuits Design for Radiation Environments will appeal to researchers and product developers in the semiconductor, space, and defense industries, as well as electronic engineers in the medical field. The book is also helpful for system, layout, process, device, reliability, applications, ESD, latchup and circuit design semiconductor engineers, along with anyone involved in micro-electronics used in harsh environments.
Download or read book Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices written by Ronald Donald Schrimpf and published by World Scientific. This book was released on 2004 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metal-oxide-semiconductor (MOS), and compound semi-conductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes the background material necessary for understanding radiation effects at a more general level.
Download or read book Extreme Environment Electronics written by John D. Cressler and published by CRC Press. This book was released on 2017-12-19 with total page 1041 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.
Download or read book Radiation Damage in Materials written by Yongqiang Wang and published by MDPI. This book was released on 2020-12-28 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: The complexity of radiation damage effects in materials that are used in various irradiation environments stems from the fundamental particle–solid interactions and the subsequent damage recovery dynamics after the collision cascades, which involves multiple length and time scales. Adding to this complexity are the transmuted impurities that are unavoidable from accompanying nuclear processes. Helium is one such impurity that plays an important and unique role in controlling the microstructure and properties of materials used in fast fission reactors, plasma-facing and structural materials in fusion devices, spallation neutron target designs, actinides, tritium-containing materials, and nuclear waste. Their ultra-low solubility in virtually all solids forces He atoms to self-precipitate into small bubbles that become nucleation sites for further void growth under radiation-induced vacancy supersaturations, resulting in material swelling and high-temperature He embrittlement, as well as surface blistering under low-energy and high-flux He bombardment. This Special Issue, “Radiation Damage in Materials—Helium Effects”, contains review articles and full-length papers on new irradiation material research activities and novel material ideas using experimental and/or modeling approaches. These studies elucidate the interactions of helium with various extreme environments and tailored nanostructures, as well as their impact on microstructural evolution and material properties.
Download or read book Fundamentals of Radiation Materials Science written by GARY S. WAS and published by Springer. This book was released on 2016-07-08 with total page 1014 pages. Available in PDF, EPUB and Kindle. Book excerpt: The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.
Download or read book Electronics Reliability and Measurement Technology written by Joseph S. Heyman and published by Elsevier. This book was released on 1998-12-31 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines electronics reliability and measurement technology. It identifies advances in measurement science and technology for nondestructive evaluation, and it details common measurement trouble spots.
Download or read book Health Risks from Exposure to Low Levels of Ionizing Radiation written by Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation and published by National Academies Press. This book was released on 2006-03-23 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the seventh in a series of titles from the National Research Council that addresses the effects of exposure to low dose LET (Linear Energy Transfer) ionizing radiation and human health. Updating information previously presented in the 1990 publication, Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR V, this book draws upon new data in both epidemiologic and experimental research. Ionizing radiation arises from both natural and man-made sources and at very high doses can produce damaging effects in human tissue that can be evident within days after exposure. However, it is the low-dose exposures that are the focus of this book. So-called “late” effects, such as cancer, are produced many years after the initial exposure. This book is among the first of its kind to include detailed risk estimates for cancer incidence in addition to cancer mortality. BEIR VII offers a full review of the available biological, biophysical, and epidemiological literature since the last BEIR report on the subject and develops the most up-to-date and comprehensive risk estimates for cancer and other health effects from exposure to low-level ionizing radiation.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Download or read book Supercolliders And Superdetectors Proceedings Of The 19th And 25th Workshops Of The Infn Eloisatron Project written by William A Barletta and published by World Scientific. This book was released on 1994-01-27 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume describes the critical issues involved in scaling the technology of proton synchrotrons to operate at energies much larger than those of existing accelerators. Luminosity limitions and interdependence of machine characteristics are analyzed. The second section presents analyses of the detector technologies needed to utilize a hadron super collider at the highest energies and luminosities.