EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mechanics of Solid Polymers

Download or read book Mechanics of Solid Polymers written by Jorgen S Bergstrom and published by William Andrew. This book was released on 2015-07-11 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very few polymer mechanics problems are solved with only pen and paper today, and virtually all academic research and industrial work relies heavily on finite element simulations and specialized computer software. Introducing and demonstrating the utility of computational tools and simulations, Mechanics of Solid Polymers provides a modern view of how solid polymers behave, how they can be experimentally characterized, and how to predict their behavior in different load environments. Reflecting the significant progress made in the understanding of polymer behaviour over the last two decades, this book will discuss recent developments and compare them to classical theories. The book shows how best to make use of commercially available finite element software to solve polymer mechanics problems, introducing readers to the current state of the art in predicting failure using a combination of experiment and computational techniques. Case studies and example Matlab code are also included. As industry and academia are increasingly reliant on advanced computational mechanics software to implement sophisticated constitutive models – and authoritative information is hard to find in one place - this book provides engineers with what they need to know to make best use of the technology available. - Helps professionals deploy the latest experimental polymer testing methods to assess suitability for applications - Discusses material models for different polymer types - Shows how to best make use of available finite element software to model polymer behaviour, and includes case studies and example code to help engineers and researchers apply it to their work

Book Computational Modeling in Tissue Engineering

Download or read book Computational Modeling in Tissue Engineering written by Liesbet Geris and published by Springer Science & Business Media. This book was released on 2012-10-30 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in: (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each of the above mentioned areas of computational modeling. The underlying tissue engineering applications will vary from blood vessels over trachea to cartilage and bone. For the chapters describing examples of the first two areas, the main focus is on (the optimization of) mechanical signals, mass transport and fluid flow encountered by the cells in scaffolds and bioreactors as well as on the optimization of the cell population itself. In the chapters describing modeling contributions in the third area, the focus will shift towards the biology, the complex interactions between biology and the micro-environmental signals and the ways in which modeling might be able to assist in investigating and mastering this complexity. The chapters cover issues related to (multiscale/multiphysics) model building, training and validation, but also discuss recent advances in scientific computing techniques that are needed to implement these models as well as new tools that can be used to experimentally validate the computational results.

Book Multiscale Modeling in Solid Mechanics

Download or read book Multiscale Modeling in Solid Mechanics written by Ugo Galvanetto and published by Imperial College Press. This book was released on 2010 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.

Book Finite Plastic Deformation of Crystalline Solids

Download or read book Finite Plastic Deformation of Crystalline Solids written by K. S. Havner and published by Cambridge University Press. This book was released on 1992-03-27 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Finite Element Modeling of Textiles in AbaqusTM CAE

Download or read book Finite Element Modeling of Textiles in AbaqusTM CAE written by Izabela Ciesielska-Wrobel and published by CRC Press. This book was released on 2019-07-26 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the book is to provide engineers with a practical guide to Finite Element Modelling (FEM) in Abaqus CAE software. The guide is in the form of step-by-step procedures concerning yarns, woven fabric and knitted fabrics modelling, as well as their contact with skin so that the simulation of haptic perception between textiles and skin can be

Book Designing of Elastomer Nanocomposites  From Theory to Applications

Download or read book Designing of Elastomer Nanocomposites From Theory to Applications written by Klaus Werner Stöckelhuber and published by Springer. This book was released on 2016-10-31 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or& nbsp;scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students.

Book Constitutive Modeling of Engineering Materials

Download or read book Constitutive Modeling of Engineering Materials written by Vladimir Buljak and published by Academic Press. This book was released on 2021-02-18 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Constitutive Modeling of Engineering Materials provides an extensive theoretical overview of elastic, plastic, damage, and fracture models, giving readers the foundational knowledge needed to successfully apply them to and solve common engineering material problems. Particular attention is given to inverse analysis, parameter identification, and the numerical implementation of models with the finite element method. Application in practice is discussed in detail, showing examples of working computer programs for simple constitutive behaviors. Examples explore the important components of material modeling which form the building blocks of any complex constitutive behavior. - Addresses complex behaviors in a wide range of materials, from polymers, to metals and shape memory alloys - Covers constitutive models with both small and large deformations - Provides detailed examples of computer implementations for material models

Book Physical Chemistry of Polymer Solutions

Download or read book Physical Chemistry of Polymer Solutions written by K. Kamide and published by Elsevier. This book was released on 2000-10-16 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is mainly concerned with building a narrow but secure ladder which polymer chemists or engineers can climb from the primary level to an advanced level without great difficulty (but by no means easily, either). This book describes some fundamentally important topics, carefully chosen, covering subjects from thermodynamics to molecular weight and its distribution effects. For help in self-education the book adopts a "Questions and Answers" format. The mathematical derivation of each equation is shown in detail. For further reading, some original references are also given. Numerous physical properties of polymer solutions are known to be significantly different from those of low molecular weight solutions. The most probable explanation of this obvious discrepancy is the large molar volume ratio of solute to solvent together with the large number of consecutive segments that constitute each single molecule of the polymer chains present as solute. Thorough understanding of the physical chemistry of polymer solutions requires some prior mathematical background in its students. In the original literature, detailed mathematical derivations of the equations are universally omitted for the sake of space-saving and simplicity. In textbooks of polymer science only extremely rough schemes of the theories and then the final equations are shown. As a consequence, the student cannot learn, unaided, the details of the theory in which he or she is interested from the existing textbooks; however, without a full understanding of the theory, one cannot analyze actual experimental data to obtain more basic and realistic physical quantities. In particular, if one intends to apply the theories in industry, accurate understanding and ability to modify the theory are essential.

Book Polymer Based Additive Manufacturing

Download or read book Polymer Based Additive Manufacturing written by Declan M. Devine and published by Springer Nature. This book was released on 2019-09-16 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to give readers a basic understanding of commonly used additive manufacturing techniques as well as the tools to fully utilise the strengths of additive manufacturing through the modelling and design phase all the way through to post processing. Guidelines for 3D-printed biomedical implants are also provided. Current biomedical applications of 3D printing are discussed, including indirect applications in the rapid manufacture of prototype tooling and direct applications in the orthopaedics, cardiovascular, drug delivery, ear-nose-throat, and tissue engineering fields. Polymer-Based Additive Manufacturing: Biomedical Applications is an ideal resource for students, researchers, and those working in industry seeking to better understand the medical applications of additive manufacturing.

Book Applied Mechanics of Polymers

Download or read book Applied Mechanics of Polymers written by George Youssef and published by Elsevier. This book was released on 2021-12-02 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Mechanics of Polymers: Properties, Processing, and Behavior provides readers with an overview of the properties, mechanical behaviors and modeling techniques for accurately predicting the behaviors of polymeric materials. The book starts with an introduction to polymers, covering their history, chemistry, physics, and various types and applications. In addition, it covers the general properties of polymers and the common processing and manufacturing processes involved with them. Subsequent chapters delve into specific mechanical behaviors of polymers such as linear elasticity, hyperelasticity, creep, viscoelasticity, failure, and fracture. The book concludes with chapters discussing electroactive polymers, hydrogels, and the mechanical characterization of polymers. This is a useful reference text that will benefit graduate students, postdocs, researchers, and engineers in the mechanics of materials, polymer science, mechanical engineering and material science. Additional resources related to the book can be found at polymersmechanics.com. - Provides examples of real-world applications that demonstrate the use of models in designing polymer-based components - Includes access to a companion site from where readers can download FEA and MATLAB code, FEA simulation files, videos and other supplemental material - Features end-of-chapter summaries with design and analysis guidelines, practice problem sets based on real-life situations, and both analytical and computational examples to bridge academic and industrial applications

Book Dynamic Behavior of Materials  Volume 1

Download or read book Dynamic Behavior of Materials Volume 1 written by Jamie Kimberley and published by Springer. This book was released on 2017-10-29 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic Behavior of Materials, Volume 1 of the Proceedings of the 2017 SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the first volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers on: Quantitative Visualization Fracture & Fragmentation Dynamic Behavior of Low Impedance Materials Shock & Blast Dynamic Behavior of Composites Novel Testing Techniques Hybrid Experimental & Computational Methods Dynamic Behavior of Geo-materials General Material Behavior

Book Molecular Mobility in Deforming Polymer Glasses

Download or read book Molecular Mobility in Deforming Polymer Glasses written by Nikhil Padhye and published by Springer Nature. This book was released on 2021-10-15 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book bridges disparate fields in an exploration of the phenomena and applications surrounding molecular mobility in glassy materials experiencing inelastic deformation. The subjects of plastic deformation and polymer motion/interdiffusion currently belong to the two different fields of continuum mechanics and polymer physics, respectively. However, molecular motion associated with plastic deformation is a key ingredient to gain fundamental understanding, both at the macroscopic and microscopic level. This short monograph provides necessary background in the aforementioned fields before addressing the topic of molecular mobility accompanied by macroscopic inelastic deformation in an accessible and easy-to-understand manner. A new phenomenon of solid-state deformation-induced bonding in polymers is discussed in detail, along with some broad implications in several manufacturing sectors. Open questions pertaining to mechanisms, mechanics, and modeling of deformation-induced bonding in polymers are presented. The book’s clear language and careful explanations will speak to readers of diverse backgrounds.

Book Simulation of damage mechanisms in weave reinforced materials based on multiscale modeling

Download or read book Simulation of damage mechanisms in weave reinforced materials based on multiscale modeling written by Naake, Dominik Robert and published by KIT Scientific Publishing. This book was released on 2020-09-18 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: A weave reinforced composite material with a thermoplastic matrix is investigated by using a multiscale chain to predict the macroscopic material behavior. A large-strain framework for constitutive modeling with focus on material non-linearities, i.e. plasticity and damage is defined. The ability of the geometric and constitutive models to predict the deformation and failure behavior is demonstrated by means of selected examples.

Book Mechanical Properties of Polycarbonate

Download or read book Mechanical Properties of Polycarbonate written by Weihong Zhang and published by Elsevier. This book was released on 2019-08-26 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanical Properties of Polycarbonate: Experiment and Modeling for Aeronautical and Aerospace Applications provides a detailed description on experimental characterization, material modeling and finite element simulation method for polycarbonate in aeronautical and aerospace applications. The book presents the experiment facilities and methods used in characterizing the mechanical properties of polycarbonate in a large range of strain rates and temperatures. The constitutive modeling of polycarbonate and the finite element simulation of polycarbonate products under impact loading are illustrated in detail. Finally, an optimization methodology is devised to optimize the injection molding process parameters for high mechanical performance of the product under impact loading. - Provides a detailed description of experimental methods and modeling technologies for the characterization of polycarbonate in aeronautical and aerospace applications - Proposes an integrative method that combines treatment and mechanical simulations for polycarbonate products - Helps readers learn how to test the mechanical properties of polycarbonate in a wide range of strain rates and temperatures

Book Temperature dependent Deformation and Fracture Behavior of a Talcum filled Co polymer

Download or read book Temperature dependent Deformation and Fracture Behavior of a Talcum filled Co polymer written by David Degenhardt and published by Springer Nature. This book was released on 2020-04-18 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: David Degenhardt develops an elasto-viscoplastic material model in order to predict the temperature and strain rate-dependent deformation and fracture behavior of thermoplastic polymers. The model bases on three supporting ambient temperatures, where a thermoplastic polymer has been characterized profoundly at the stress states 1) uni-axial tension and compression, 2) bi-axial tension and 3) shear. The core of the material model builds a pressure-dependent yield function with a non-associated flow rule. Further, it contains an analytical hardening law and a strain rate-dependent fracture criterion. The model is validated with components subjected to impact loading at different ambient temperatures. The comparison of the simulation and the experiments shows that stiffness, hardening, fractures strain as well as thicknesses can be well captured. About the Author: David Degenhardt is a calculation engineer in the chassis development department of a German automobile manufacturer and earned his doctorate while working at the Technische Universität Carolo-Wilhelmina zu Braunschweig, Germany.

Book Modeling and Analysis of Passive Vibration Isolation Systems

Download or read book Modeling and Analysis of Passive Vibration Isolation Systems written by Sudhir Kaul and published by Elsevier. This book was released on 2021-08-31 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling and Analysis of Passive Vibration Isolation Systems discusses a wide range of dynamic models that can be used for the design and analysis of passive vibration isolation systems. These models range from linear viscoelastic single degree-of-freedom systems to multiple degree-of-freedom nonlinear systems. They can be used to evaluate hyperelasticity and creep, and to represent the inertia effect for an evaluation of vibroacoustic characteristics at high frequencies. This book also highlights specific nonlinear behavior, displacement-limiting designs, hyperelastic behavior, and characteristics associated with elastomeric materials for each model. It also identifies key attributes, limitations, and constraints, providing a holistic reference that can be used for the design and analysis of passive vibration isolators. Modeling and Analysis of Passive Vibration Isolation Systems serves as a reference for engineers and researchers involved in the design, development, modeling, analysis, and testing of passive vibration isolation systems and as a reference for a graduate course in vibration modeling and analysis. - Outlines the use of multiple models for optimal passive vibration isolation system design - Discusses the effects system design has on subsequent product development components and parameters - Includes applied examples from the automotive, aerospace, civil engineering and machine tool industries - Presents models that can be extended or modified to investigate different means of passive isolation, nonlinearities, and specific design configurations - Considers specific elastomer characteristics such as Mullins and Payne effects for theoretical modeling and analysis

Book Advances in Biomaterials for Biomedical Applications

Download or read book Advances in Biomaterials for Biomedical Applications written by Anuj Tripathi and published by Springer. This book was released on 2017-01-24 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights recent advances in the field of biomaterials design and the state of the art in biomaterials applications for biomedicine. Addressing key aspects of biomaterials, the book explores technological advances at multi-scale levels (macro, micro, and nano), which are used in applications related to cell and tissue regeneration. The book also discusses the future scope of bio-integrated systems. The contents are supplemented by illustrated examples, and schematics of molecular and cellular interactions with biomaterials/scaffolds are included to promote a better understanding of the complex biological mechanisms involved in material-to-biomolecule interactions. The book also covers factors that govern cell growth, differentiation, and regeneration in connection with the treatment and recovery of native biological systems. Tissue engineering, drug screening and delivery, and electrolyte complexes for biomedical applications are also covered in detail. This book offers a comprehensive reference guide for multi-disciplinary communities working in the area of biomaterials, and will benefit researchers and graduate students alike.