EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mechanical Design and Manufacturing of an Insect scale Flapping wing Robot

Download or read book Mechanical Design and Manufacturing of an Insect scale Flapping wing Robot written by Kevin Yuan Ma and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the prevalence of insect flight as a form of locomotion in nature, manmade aerial systems have yet to match the aerial prowess of flying insects. Within a tiny body volume, flying insects embody the capabilities to flap seemingly insubstantial wings at very high frequencies and sustain beyond their own body weight in flight. A precise authority over their wing motions enables them to respond to obstacles and threats in flight with unrivaled speed and grace.

Book Design of Hybrid Passive and Active Mechanisms for Control of Insect Scale Flapping Wing Robots

Download or read book Design of Hybrid Passive and Active Mechanisms for Control of Insect Scale Flapping Wing Robots written by Zhi Ern Teoh and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Flying insects exhibit a remarkable ability to fly in environments that are small, cluttered and highly dynamic. Inspired by these animals, scientist have made great strides in understanding the aerodynamic mechanisms behind insect-scale flapping-wing flight. By applying these mechanisms together with recent advances in meso-scale fabrication techniques, engineers built an insect-scale flapping-wing robot and demonstrated hover by actively controlling the robot about its roll and pitch axes. The robot, however, lacked control over its yaw axis preventing control over its heading angle.

Book Design of an Insect Scale Flapping Wing Robot with Concomitant Piezoelectric Velocity Sensing for Flight

Download or read book Design of an Insect Scale Flapping Wing Robot with Concomitant Piezoelectric Velocity Sensing for Flight written by Edward I. Lan and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current bioinspired flapping-wing micro aerial robots incorporate numerous capabilities pulled from the study of insect morphologies, and have utilized these designs to improve flight stability, time, and energy efficiency. However, this approach to design of robotic systems draws unidirectionally from the threshold of biology into robotics, pulling from the mechanisms and mechanics that evolutionary biology has spent millennia iterating, without utilizing these robots to further study insect and animal traits. In this research we develop a flapping-wing micro-aerial robot, scaled up in size from the Harvard RoboBee, designed as a platform for studying the control mechanisms inherent in insect muscle physiology. A concomitant velocity sensing circuit is implemented in a piezoelectric actuator, to self-sense the velocity of the actuator tip and feed it into a control feedback loop. The loop simulates antagonistic delay-stretch activation muscles, mimicking insects that fly asynchronously. Using the concomitant sensing and Upscaled Robobee, the system generates stable oscillatory flapping-wing motion without the use of large off-board displacement sensors across a range of control parameters, and performs as a platform for future DSA control studies.

Book The DelFly

Download or read book The DelFly written by G.C.H.E. de Croon and published by Springer. This book was released on 2015-11-26 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the topics most relevant to autonomously flying flapping wing robots: flapping-wing design, aerodynamics, and artificial intelligence. Readers can explore these topics in the context of the "Delfly", a flapping wing robot designed at Delft University in The Netherlands. How are tiny fruit flies able to lift their weight, avoid obstacles and predators, and find food or shelter? The first step in emulating this is the creation of a micro flapping wing robot that flies by itself. The challenges are considerable: the design and aerodynamics of flapping wings are still active areas of scientific research, whilst artificial intelligence is subject to extreme limitations deriving from the few sensors and minimal processing onboard. This book conveys the essential insights that lie behind success such as the DelFly Micro and the DelFly Explorer. The DelFly Micro, with its 3.07 grams and 10 cm wing span, is still the smallest flapping wing MAV in the world carrying a camera, whilst the DelFly Explorer is the world's first flapping wing MAV that is able to fly completely autonomously in unknown environments. The DelFly project started in 2005 and ever since has served as inspiration, not only to many scientific flapping wing studies, but also the design of flapping wing toys. The combination of introductions to relevant fields, practical insights and scientific experiments from the DelFly project make this book a must-read for all flapping wing enthusiasts, be they students, researchers, or engineers.

Book Design of Insect scale Flapping Wing Vehicles

Download or read book Design of Insect scale Flapping Wing Vehicles written by Mostafa Ramadan Ahmed Nabawy and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Flying Insects and Robots

Download or read book Flying Insects and Robots written by Dario Floreano and published by Springer Science & Business Media. This book was released on 2009-10-23 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flying insects are intelligent micromachines capable of exquisite maneuvers in unpredictable environments. Understanding these systems advances our knowledge of flight control, sensor suites, and unsteady aerodynamics, which is of crucial interest to engineers developing intelligent flying robots or micro air vehicles (MAVs). The insights we gain when synthesizing bioinspired systems can in turn benefit the fields of neurophysiology, ethology and zoology by providing real-life tests of the proposed models. This book was written by biologists and engineers leading the research in this crossdisciplinary field. It examines all aspects of the mechanics, technology and intelligence of insects and insectoids. After introductory-level overviews of flight control in insects, dedicated chapters focus on the development of autonomous flying systems using biological principles to sense their surroundings and autonomously navigate. A significant part of the book is dedicated to the mechanics and control of flapping wings both in insects and artificial systems. Finally hybrid locomotion, energy harvesting and manufacturing of small flying robots are covered. A particular feature of the book is the depth on realization topics such as control engineering, electronics, mechanics, optics, robotics and manufacturing. This book will be of interest to academic and industrial researchers engaged with theory and engineering in the domains of aerial robotics, artificial intelligence, and entomology.

Book Springs and Wings

    Book Details:
  • Author : James Lynch
  • Publisher :
  • Release : 2023
  • ISBN :
  • Pages : 0 pages

Download or read book Springs and Wings written by James Lynch and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade, roboticists have had significant success building centimeter-scale flapping wing micro aerial vehicles (FWMAVs) inspired by the flight of insects. Evidence suggests that insects store and release energy in the thoracic exoskeleton to improve energy efficiency by flapping at resonance. Insect-inspired micro flying robots have also leveraged resonance to improve efficiency, but they have discovered that operating at the resonant frequency leads to issues with flight control. This research seeks to investigate the roles that elasticity, aerodynamics, and muscle dynamics play in the emergent dynamics of flapping flight by studying elastic flapping spring-wing systems using dynamically-scaled robophysical models of spring-wings. Studying the dynamics of a robot with comparable features enables the validation of models from biology that are otherwise difficult to test in living insects, the generation of new hypotheses, and the development of novel FWMAV designs. In Chapter 1, the spring-wing system is characterized as a nonlinear spring-mass-damper model. A robophysical model validates that such systems gain energetic benefits from operating at resonance, but reveals that the benefit scales with an underappreciated dimensionless ratio of inertial to aerodynamic forces, the Weis-Fogh number. We show through dimensional analysis that any real system, living or robotic, must balance the mechanical advantage gained from operating at resonance with diminishing returns in efficiency. Chapter 2 further explores the impact of the Weis-Fogh number on flapping dynamics, showing that responsiveness to control inputs is reduced and resistance to environmental perturbations is increased as the dimensionless ratio increases. Together with calculations of Weis-Fogh number in insects, these studies illustrate tradeoffs that drive evolution of resonant flight in nature and guide development of future FWMAVs with elastic energy exchange. In the second half of the thesis, muscle dynamics are introduced in the form of a simplified model of self-excited asynchronous insect muscle. In Chapter 3, a linear feedback model adapted from experiments on insect flight muscle is developed and integrated with the spring-wing model, producing a system that generates steady flapping via limit-cycle oscillations despite the absence of periodic control inputs. The model is explored analytically, in simulation, and via implementation on the robotic spring-wing. Novel dynamic characteristics that enable adaptation to damage and passive response to wing collisions are described. Chapter 4 leverages the asynchronous feedback model as part of an interdisciplinary study of the evolution of asynchronous muscle. Phylogenetic analysis, direct measurement of insect muscle dynamics, and experiments on the robophysical system show that evolutionary transitions between periodically forced and self-excited insect muscle were likely made possible by a "bridge" in the dynamic parameter space that could be traversed under specific conditions. The asynchronous spring-wing model provides new insight into the flight and evolution of some of the most agile insects in nature, and presents a novel adaptive control scheme for future FWMAVs.

Book An Introduction to Flapping Wing Aerodynamics

Download or read book An Introduction to Flapping Wing Aerodynamics written by Wei Shyy and published by Cambridge University Press. This book was released on 2013-08-19 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an ideal book for graduate students and researchers interested in the aerodynamics, structural dynamics and flight dynamics of small birds, bats and insects, as well as of micro air vehicles (MAVs), which present some of the richest problems intersecting science and engineering. The agility and spectacular flight performance of natural flyers, thanks to their flexible, deformable wing structures, as well as to outstanding wing, tail and body coordination, is particularly significant. To design and build MAVs with performance comparable to natural flyers, it is essential that natural flyers' combined flexible structural dynamics and aerodynamics are adequately understood. The primary focus of this book is to address the recent developments in flapping wing aerodynamics. This book extends the work presented in Aerodynamics of Low Reynolds Number Flyers (Shyy et al. 2008).

Book Flapping Wing Vehicles

Download or read book Flapping Wing Vehicles written by Lung-Jieh Yang and published by CRC Press. This book was released on 2021-09-30 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flapping wing vehicles (FWVs) have unique flight characteristics and the successful flight of such a vehicle depends upon efficient design of the flapping mechanisms while keeping the minimum weight of the structure. Flapping Wing Vehicles: Numerical and Experimental Approach discusses design and kinematic analysis of various flapping wing mechanisms, measurement of flap angle/flapping frequency, and computational fluid dynamic analysis of motion characteristics including manufacturing techniques. The book also includes wind tunnel experiments, high-speed photographic analysis of aerodynamic performance, soap film visualization of 3D down washing, studies on the effect of wing rotation, figure-of-eight motion characteristics, and more. Features Covers all aspects of FWVs needed to design one and understand how and why it flies Explains related engineering practices including flapping mechanism design, kinematic analysis, materials, manufacturing, and aerodynamic performance measures using wind tunnel experiments Includes CFD analysis of 3D wing profile, formation flight of FWVs, and soap film visualization of flapping wings Discusses dynamics and image-based control of a group of ornithopters Explores indigenous PCB design for achieving altitude and attitude control This book is aimed at researchers and graduate students in mechatronics, materials, aerodynamics, robotics, biomimetics, vehicle design and MAV/UAV.

Book The Biomechanics of Insect Flight

Download or read book The Biomechanics of Insect Flight written by Robert Dudley and published by Princeton University Press. This book was released on 2018-06-05 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the rain forests of Borneo to the tenements of Manhattan, winged insects are a conspicuous and abundant feature of life on earth. Here, Robert Dudley presents the first comprehensive explanation of how insects fly. The author relates the biomechanics of flight to insect ecology and evolution in a major new work of synthesis. The book begins with an overview of insect flight biomechanics. Dudley explains insect morphology, wing motions, aerodynamics, flight energetics, and flight metabolism within a modern phylogenetic setting. Drawing on biomechanical principles, he describes and evaluates flight behavior and the limits to flight performance. The author then takes the next step by developing evolutionary explanations of insect flight. He analyzes the origins of flight in insects, the roles of natural and sexual selection in determining how insects fly, and the relationship between flight and insect size, pollination, predation, dispersal, and migration. Dudley ranges widely--from basic aerodynamics to muscle physiology and swarming behavior--but his focus is the explanation of functional design from evolutionary and ecological perspectives. The importance of flight in the lives of insects has long been recognized but never systematically evaluated. This book addresses that shortcoming. Robert Dudley provides an introduction to insect flight that will be welcomed by students and researchers in biomechanics, entomology, evolution, ecology, and behavior.

Book Flapping Wing Mechanisms for Pico Air Vehicles Using Piezoelectric Actuators

Download or read book Flapping Wing Mechanisms for Pico Air Vehicles Using Piezoelectric Actuators written by Kiron Mateti and published by . This book was released on 2012 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Distinct Aerodynamics of Insect Scale Flight

Download or read book Distinct Aerodynamics of Insect Scale Flight written by Csaba Hefler and published by Cambridge University Press. This book was released on 2021-05-27 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Insect-scale flapping wing flight vehicles can conduct environmental monitoring, disaster assessment, mapping, positioning and security in complex and challenging surroundings. To develop bio-inspired flight vehicles, systematic probing based on the particular category of flight vehicles is needed. This Element addresses the aerodynamics, aeroelasticity, geometry, stability and dynamics of flexible flapping wings in the insect flight regime. The authors highlight distinct features and issues, contrast aerodynamic stability between rigid and flexible wings, present the implications of the wing-aspect ratio, and use canonical models and dragonflies to elucidate scientific insight as well as technical capabilities of bio-inspired design.

Book Nature s Flyers

    Book Details:
  • Author : David E. Alexander
  • Publisher : JHU Press
  • Release : 2004-11-17
  • ISBN : 9780801880599
  • Pages : 390 pages

Download or read book Nature s Flyers written by David E. Alexander and published by JHU Press. This book was released on 2004-11-17 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Nature's Flyers' is a detailed account of the current scientific understanding of the primary aspects of flight in nature. The author explains the physical basis of flight, drawing upon bats, birds, insects, pterosaurs and even winged seeds.

Book Proceedings of 2022 International Conference on Autonomous Unmanned Systems  ICAUS 2022

Download or read book Proceedings of 2022 International Conference on Autonomous Unmanned Systems ICAUS 2022 written by Wenxing Fu and published by Springer Nature. This book was released on 2023-03-10 with total page 3985 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes original, peer-reviewed research papers from the ICAUS 2022, which offers a unique and interesting platform for scientists, engineers and practitioners throughout the world to present and share their most recent research and innovative ideas. The aim of the ICAUS 2022 is to stimulate researchers active in the areas pertinent to intelligent unmanned systems. The topics covered include but are not limited to Unmanned Aerial/Ground/Surface/Underwater Systems, Robotic, Autonomous Control/Navigation and Positioning/ Architecture, Energy and Task Planning and Effectiveness Evaluation Technologies, Artificial Intelligence Algorithm/Bionic Technology and Its Application in Unmanned Systems. The papers showcased here share the latest findings on Unmanned Systems, Robotics, Automation, Intelligent Systems, Control Systems, Integrated Networks, Modeling and Simulation. It makes the book a valuable asset for researchers, engineers, and university students alike.

Book Bioinspired Structures and Design

Download or read book Bioinspired Structures and Design written by Wole Soboyejo and published by Cambridge University Press. This book was released on 2020-09-17 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.

Book Feedback Systems

Download or read book Feedback Systems written by Karl Johan Åström and published by Princeton University Press. This book was released on 2021-02-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory

Book A Compliant Thorax Design for Robustness and Elastic Energy Exchange in Flapping wing Robots

Download or read book A Compliant Thorax Design for Robustness and Elastic Energy Exchange in Flapping wing Robots written by Hang Gao and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flapping wing insects benefit from a compliant thorax that provides elastic energy exchange and resiliency to wing collisions. In this thesis, we present a flapping wing robot that uses an underactuated, compliant, transmission inspired by the insect thorax. We developed a novel fabrication method that combines carbon fiber (CF) laminate and soft robotics fabrication techniques for transmission construction. The transmission design is optimized to achieve desired wingstroke requirements and to allow for independent motion of each wing. We validate these design choices in benchtop tests measuring transmission compliance and kinematics. We integrate the transmission with laminate wings and two types of actuation, demonstrating elastic energy exchange and limited lift-off capabilities. Lastly, we tested collision mitigation through flapping wing experiments that obstructed the motion of a wing. These experiments demonstrate that an underactuated compliant, transmission can provide resilience and robustness to flapping wing robots.