Download or read book Measuring Contagion with a Bayesian Time Varying Coefficient Model written by Matteo Ciccarelli and published by . This book was released on 2006 with total page 33 pages. Available in PDF, EPUB and Kindle. Book excerpt: We propose using a Bayesian time-varying coefficient model estimated with Markov chain-Monte Carlo methods to measure contagion empirically. The proposed measure works in the joint presence of heteroskedasticity and omitted variables and does not require knowledge of the timing of the crisis. It distinguishes contagion not only from interdependence but also from structural breaks and can be used to investigate positive as well as negative contagion. The proposed measure appears to work well using both simulated and actual data.
Download or read book Regression Analysis of Count Data written by Adrian Colin Cameron and published by Cambridge University Press. This book was released on 2013-05-27 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the most comprehensive and up-to-date account of regression methods to explain the frequency of events.
Download or read book Bayesian Models for Categorical Data written by Peter Congdon and published by John Wiley & Sons. This book was released on 2005-12-13 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.
Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Download or read book The Frailty Model written by Luc Duchateau and published by Springer Science & Business Media. This book was released on 2007-10-23 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Readers will find in the pages of this book a treatment of the statistical analysis of clustered survival data. Such data are encountered in many scientific disciplines including human and veterinary medicine, biology, epidemiology, public health and demography. A typical example is the time to death in cancer patients, with patients clustered in hospitals. Frailty models provide a powerful tool to analyze clustered survival data. In this book different methods based on the frailty model are described and it is demonstrated how they can be used to analyze clustered survival data. All programs used for these examples are available on the Springer website.
Download or read book Bayesian Model Comparison written by Ivan Jeliazkov and published by Emerald Group Publishing. This book was released on 2014-11-21 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of Advances in Econometrics 34 focusses on Bayesian model comparison. It reflects the recent progress in model building and evaluation that has been achieved in the Bayesian paradigm and provides new state-of-the-art techniques, methodology, and findings that should stimulate future research.
Download or read book Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases written by Piero Manfredi and published by Springer Science & Business Media. This book was released on 2013-01-04 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume summarizes the state-of-the-art in the fast growing research area of modeling the influence of information-driven human behavior on the spread and control of infectious diseases. In particular, it features the two main and inter-related “core” topics: behavioral changes in response to global threats, for example, pandemic influenza, and the pseudo-rational opposition to vaccines. In order to make realistic predictions, modelers need to go beyond classical mathematical epidemiology to take these dynamic effects into account. With contributions from experts in this field, the book fills a void in the literature. It goes beyond classical texts, yet preserves the rationale of many of them by sticking to the underlying biology without compromising on scientific rigor. Epidemiologists, theoretical biologists, biophysicists, applied mathematicians, and PhD students will benefit from this book. However, it is also written for Public Health professionals interested in understanding models, and to advanced undergraduate students, since it only requires a working knowledge of mathematical epidemiology.
Download or read book Impact of public health and social measures for COVID 19 control on infectious disease epidemiology written by Sukhyun Ryu and published by Frontiers Media SA. This book was released on 2024-05-10 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have had a global impact, leading to a set of public health and social measures (PHSMs). These measures—such as hand hygiene, mask wearing, and social distancing—have affected people’s behavior and thus led to change in the transmission of infectious diseases. Studies of the impact of the opportunistic implementation of PHSMs on infectious diseases including respiratory virus infections during the Coronavirus Disease 2019 (COVID-19) pandemic have been reported. For example, seasonal influenza epidemics, sexual transmitted infections, and pediatric infectious diseases decreased significantly during the COVID-19 pandemic.
Download or read book Regression Modelling wih Spatial and Spatial Temporal Data written by Robert P. Haining and published by CRC Press. This book was released on 2020-01-27 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling Spatial and Spatial-Temporal Data: A Bayesian Approach is aimed at statisticians and quantitative social, economic and public health students and researchers who work with spatial and spatial-temporal data. It assumes a grounding in statistical theory up to the standard linear regression model. The book compares both hierarchical and spatial econometric modelling, providing both a reference and a teaching text with exercises in each chapter. The book provides a fully Bayesian, self-contained, treatment of the underlying statistical theory, with chapters dedicated to substantive applications. The book includes WinBUGS code and R code and all datasets are available online. Part I covers fundamental issues arising when modelling spatial and spatial-temporal data. Part II focuses on modelling cross-sectional spatial data and begins by describing exploratory methods that help guide the modelling process. There are then two theoretical chapters on Bayesian models and a chapter of applications. Two chapters follow on spatial econometric modelling, one describing different models, the other substantive applications. Part III discusses modelling spatial-temporal data, first introducing models for time series data. Exploratory methods for detecting different types of space-time interaction are presented followed by two chapters on the theory of space-time separable (without space-time interaction) and inseparable (with space-time interaction) models. An applications chapter includes: the evaluation of a policy intervention; analysing the temporal dynamics of crime hotspots; chronic disease surveillance; and testing for evidence of spatial spillovers in the spread of an infectious disease. A final chapter suggests some future directions and challenges.
Download or read book Global Behavioral Risk Factor Surveillance written by David V. McQueen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the latest information on surveillance by the international public health community, including: the WHO's Stepwise Approach, the U.S.'s Behavioral Risk Factor Surveillance System, the Finbalt Health Monitor, the EURALIM Experience, and the Mega Country Health Promotion Network. It is for those involved in planning or conducting chronic disease risk factor surveillance and for those interested in developing a global network of persons involved in this arena.
Download or read book Bayesian Modeling Using WinBUGS written by Ioannis Ntzoufras and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all data sets and code are available on the book's related Web site. Requiring only a working knowledge of probability theory and statistics, Bayesian Modeling Using WinBUGS serves as an excellent book for courses on Bayesian statistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, actuarial science, medicine, and the social sciences who use WinBUGS in their everyday work.
Download or read book Financial and Macroeconomic Connectedness written by Francis X. Diebold and published by Oxford University Press. This book was released on 2015-02-03 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Connections among different assets, asset classes, portfolios, and the stocks of individual institutions are critical in examining financial markets. Interest in financial markets implies interest in underlying macroeconomic fundamentals. In Financial and Macroeconomic Connectedness, Frank Diebold and Kamil Yilmaz propose a simple framework for defining, measuring, and monitoring connectedness, which is central to finance and macroeconomics. These measures of connectedness are theoretically rigorous yet empirically relevant. The approach to connectedness proposed by the authors is intimately related to the familiar econometric notion of variance decomposition. The full set of variance decompositions from vector auto-regressions produces the core of the 'connectedness table.' The connectedness table makes clear how one can begin with the most disaggregated pair-wise directional connectedness measures and aggregate them in various ways to obtain total connectedness measures. The authors also show that variance decompositions define weighted, directed networks, so that these proposed connectedness measures are intimately related to key measures of connectedness used in the network literature. After describing their methods in the first part of the book, the authors proceed to characterize daily return and volatility connectedness across major asset (stock, bond, foreign exchange and commodity) markets as well as the financial institutions within the U.S. and across countries since late 1990s. These specific measures of volatility connectedness show that stock markets played a critical role in spreading the volatility shocks from the U.S. to other countries. Furthermore, while the return connectedness across stock markets increased gradually over time the volatility connectedness measures were subject to significant jumps during major crisis events. This book examines not only financial connectedness, but also real fundamental connectedness. In particular, the authors show that global business cycle connectedness is economically significant and time-varying, that the U.S. has disproportionately high connectedness to others, and that pairwise country connectedness is inversely related to bilateral trade surpluses.
Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Download or read book Modeling and Dynamics of Infectious Diseases written by Zhien Ma and published by World Scientific. This book was released on 2009 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic introduction to the fundamental methods and techniques and the frontiers of ? along with many new ideas and results on ? infectious disease modeling, parameter estimation and transmission dynamics. It provides complementary approaches, from deterministic to statistical to network modeling; and it seeks viewpoints of the same issues from different angles, from mathematical modeling to statistical analysis to computer simulations and finally to concrete applications.
Download or read book Spatial Epidemiology written by Paul Elliott and published by . This book was released on 2000 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a new paperback edition of the well received text Spatial Epid emiology: Methods and Applications. It is an easy to read, clear and c oncise exploration of the field of geographical variations in diseases . Especially with respect to variations in environmental exposures at the small-area scale this book gives an authoriative account of curren t practice and developments. The recent and rapid expansion of the fie ld looks set to continue in line with growing public, governmental and media concern about environmental and health issues, and the scientif ic need to understand and explain the effects of environmental polluta nts on health.
Download or read book Applied Statistical Inference written by Leonhard Held and published by Springer Science & Business Media. This book was released on 2013-11-12 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers modern statistical inference based on likelihood with applications in medicine, epidemiology and biology. Two introductory chapters discuss the importance of statistical models in applied quantitative research and the central role of the likelihood function. The rest of the book is divided into three parts. The first describes likelihood-based inference from a frequentist viewpoint. Properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic are discussed in detail. In the second part, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. Modern numerical techniques for Bayesian inference are described in a separate chapter. Finally two more advanced topics, model choice and prediction, are discussed both from a frequentist and a Bayesian perspective. A comprehensive appendix covers the necessary prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis.