Download or read book Kaon Physics written by Jonathan L. Rosner and published by University of Chicago Press. This book was released on 2001-01-15 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1947, the first of what have come to be known as "strange particles" were detected. As the number and variety of these particles proliferated, physicists began to try to make sense of them. Some seemed to have masses about 900 times that of the electron, and existed in both charged and neutral varieties. These particles are now called kaons (or K mesons), and they have become the subject of some of the most exciting research in particle physics. Kaon Physics at the Turn of the Millennium presents cutting-edge papers by leading theorists and experimentalists that synthesize the current state of the field and suggest promising new directions for the future study of kaons. Topics covered include the history of kaon physics, direct CP violation in kaon decays, time reversal violation, CPT studies, theoretical aspects of kaon physics, rare kaon decays, hyperon physics, charm: CP violation and mixing, the physics of B mesons, and future opportunities for kaon physics in the twenty-first century.
Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Download or read book The Glossary of Prosthodontic Terms written by and published by . This book was released on 1994 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Download or read book Mathematical Foundations of Neuroscience written by G. Bard Ermentrout and published by Springer Science & Business Media. This book was released on 2010-07-01 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.
Download or read book Particle Physics written by Necia Grant Cooper and published by CUP Archive. This book was released on 1988-04-29 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the emergence of a profoundly new understanding of the fundamental forces of Nature.
Download or read book Particle Detectors written by Hermann Kolanoski and published by Oxford University Press. This book was released on 2020-06-30 with total page 949 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.
Download or read book An Invitation to Statistics in Wasserstein Space written by Victor M. Panaretos and published by Springer Nature. This book was released on 2020-03-10 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the key aspects of statistics in Wasserstein spaces, i.e. statistics in the space of probability measures when endowed with the geometry of optimal transportation. Further to reviewing state-of-the-art aspects, it also provides an accessible introduction to the fundamentals of this current topic, as well as an overview that will serve as an invitation and catalyst for further research. Statistics in Wasserstein spaces represents an emerging topic in mathematical statistics, situated at the interface between functional data analysis (where the data are functions, thus lying in infinite dimensional Hilbert space) and non-Euclidean statistics (where the data satisfy nonlinear constraints, thus lying on non-Euclidean manifolds). The Wasserstein space provides the natural mathematical formalism to describe data collections that are best modeled as random measures on Euclidean space (e.g. images and point processes). Such random measures carry the infinite dimensional traits of functional data, but are intrinsically nonlinear due to positivity and integrability restrictions. Indeed, their dominating statistical variation arises through random deformations of an underlying template, a theme that is pursued in depth in this monograph.
Download or read book B Decays written by Sheldon Stone and published by World Scientific. This book was released on 1994 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2nd edition is an extensive update of "B Decays?. The revisions are necessary because of the extensive amount of new data and new theoretical ideas. This book reviews what is known about b-quark decays and also looks at what can be learned in the future.The importance of this research area is increasing, as evidenced by the approval of the luminosity upgrade for CESR and the asymmetric B factories at SLAC and KEK, and the possibility of experiments at hadron colliders.The key experimental observations made thus far, measurement of the lifetimes of the different B species, B0-B0 mixing, the discovery of ?Penguin? mediated decays, and the extraction of the CKM matrix elements Vub and Vcb from semileptonic decays, as well as more mundane results, are described in great detail by the experimentalists who have been closely involved with making the measurements. Theoretical progress in understanding b-quark decays using HQET and lattice gauge techniques are described by theorists who have developed and used these techniques.Synthesizing the experimental and theoretical information, several articles discuss the implications for the ?Standard Model? and how further tests can be done using measurements of CP violation in the B system.
Download or read book Antihydrogen and Fundamental Physics written by Michael Charlton and published by Springer Nature. This book was released on 2020-07-19 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of high-precision antihydrogen spectroscopy has opened up the possibility of direct tests with unprecedented accuracy of some of the most fundamental principles of physics, notably Lorentz and CPT symmetry and the Einstein equivalence principle. This book reviews these principles, emphasising their interconnections in quantum field theory and general relativity and the special role of antimatter, and explores how they may be tested in current and forthcoming experiments on antihydrogen. Original research results relevant to the experimental programme of the ALPHA collaboration at CERN are presented, together with the implications for antihydrogen of proposed theories featuring novel `fifth-force' interactions.
Download or read book Semiconductor Detector Systems written by Helmuth Spieler and published by OUP Oxford. This book was released on 2005-08-25 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor sensors patterned at the micron scale combined with custom-designed integrated circuits have revolutionized semiconductor radiation detector systems. Designs covering many square meters with millions of signal channels are now commonplace in high-energy physics and the technology is finding its way into many other fields, ranging from astrophysics to experiments at synchrotron light sources and medical imaging. This book is the first to present a comprehensive discussion of the many facets of highly integrated semiconductor detector systems, covering sensors, signal processing, transistors and circuits, low-noise electronics, and radiation effects. The diversity of design approaches is illustrated in a chapter describing systems in high-energy physics, astronomy, and astrophysics. Finally a chapter "Why things don't work" discusses common pitfalls. Profusely illustrated, this book provides a unique reference in a key area of modern science.
Download or read book The Standard Model written by Cliff Burgess and published by Cambridge University Press. This book was released on 2007 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2006 book uses the standard model as a vehicle for introducing quantum field theory.
Download or read book Particles and Nuclei written by Bogdan Povh and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fourth edition includes new developments, in particular a new section on the double beta decay including a discussion of the possibility of a neutrinoless decay and its implications for the standard model.
Download or read book Nonnegative Matrix and Tensor Factorizations written by Andrzej Cichocki and published by John Wiley & Sons. This book was released on 2009-07-10 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.
Download or read book Holographic Quantum Matter written by Sean A. Hartnoll and published by MIT Press. This book was released on 2018-03-16 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of holographic methods in quantum matter, written by pioneers in the field. This book, written by pioneers in the field, offers a comprehensive overview of holographic methods in quantum matter. It covers influential developments in theoretical physics, making the key concepts accessible to researchers and students in both high energy and condensed matter physics. The book provides a unique combination of theoretical and historical context, technical results, extensive references to the literature, and exercises. It will give readers the ability to understand the important problems in the field, both those that have been solved and those that remain unsolved, and will enable them to engage directly with the current literature. The book describes a particular interface between condensed matter physics, gravitational physics, and string and quantum field theory made possible by holographic duality. The chapters cover such topics as the essential workings of the holographic correspondence; strongly interacting quantum matter at a fixed commensurate density; compressible quantum matter with a variable density; transport in quantum matter; the holographic description of symmetry broken phases; and the relevance of the topics covered to experimental challenges in specific quantum materials. Holographic Quantum Matter promises to be the definitive presentation of this material.
Download or read book Handbook of Single Molecule Biophysics written by Peter Hinterdorfer and published by Springer Science & Business Media. This book was released on 2009-12-24 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook describes experimental techniques to monitor and manipulate individual biomolecules, including fluorescence detection, atomic force microscopy, and optical and magnetic trapping. It includes single-molecule studies of physical properties of biomolecules such as folding, polymer physics of protein and DNA, enzymology and biochemistry, single molecules in the membrane, and single-molecule techniques in living cells.
Download or read book The Nucleus written by F.D. Smit and published by Springer Science & Business Media. This book was released on 1999 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the International Conference on The Nucleus: New Physics for the New Millennium, held January 18-22, 1999, at the National Accelerator Centre, Faure, South Africa