EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Behavior of Semi integral Abutment Bridge with Turn back Wingwalls Supported on Drilled Shafts

Download or read book Behavior of Semi integral Abutment Bridge with Turn back Wingwalls Supported on Drilled Shafts written by Safiya Ahmed and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semi-integral abutment bridges are integral abutment bridges with a flexible interface at the abutment to reduce the force transferred to the foundation. Wingwalls in abutment and semi-integral abutment bridges are designed as retaining walls to avoid the sliding of the backfill soil behind the bridge abutments and roadways. Using turn-back wingwalls that are parallel to the bridge diaphragm can provide support for the parapets and minimize the total longitudinal pressure on the abutments. These walls are subjected to axial forces and bending moments due to the thermal movements. These forces can affect the orientation and the connection details of the wingwalls, which could cause cracks in the wingwalls. Despite several studies on integral abutment bridges, there are no studies that combined the behavior of the drilled shafts, footings, abutment walls, and the turnback wingwalls of semi-integral abutment bridges. The long-term performance of a semi-integral abutment bridge with turn-back wingwalls supported on drilled shafts in Ohio was investigated in this doctorate study by instrumenting five drilled shafts, footing, the forward abutment wall, and one of the wingwalls during construction. Strain and temperature were collected in 2017, 2018, and 2019. It was found that the seasonal and daily temperature changes have a significant effect on the changes in the strain in the substructure. The behavior of the abutment wall significantly affects the behavior of the wingwall, footing, and drilled shafts. It was also noticed that the behavior of the abutment was irreversible, and the top of the abutment wall and the top of the drilled shaft induced higher strain than the bottom. Cracks were noticed at the front face of the abutment wall and wingwall, and these cracks tended to close as the air temperature decreased and open as the air temperature increased. The extremely cold weather conditions induced tensile strain higher than the allowable strain at the top corner of the front face of the abutment wall and the rear face of the wingwall. Finite element results were compared with the field data, and the behavior of the substructure was achieved by the model. Parametric studies were conducted on the bridge substructure with different wingwall types and soil backfill. The results showed lower stiffness of soil backfill induces higher stresses in the bridge substructure. Moreover, inline wingwalls induce the highest thermal stresses in the substructure, while flared wingwalls induce the lowest thermal stress compared to the other types of wingwalls.

Book Integral and Semi Integral Bridges

Download or read book Integral and Semi Integral Bridges written by Martin P Burke Jr and published by John Wiley & Sons. This book was released on 2009-06-17 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Worldwide, integral type bridges are being used in greater numbersin lieu of jointed bridges because of their structural simplicity,first-cost economy, and outstanding durability. In the UK and theUS states of Tennessee and Missouri, for example, the constructionof most moderate length bridges is based on the integral bridgeconcept. The state of Washington uses semi-integral bridges almostexclusively, while, depending on subfoundation characteristics, thestate of Ohio and others use a mix of these two bridge types. Integral and Semi-Integral Bridges has been written by apracticing bridge design engineer who has spent his entire careerinvolved in the origination, evaluation and design of such bridgesin the USA, where they have been in use since the late1930’s. This work shows how the analytical complexity due tothe elimination of movable joints can be minimized to negligiblelevels so that most moderate length bridges can be easily andquickly modified or replaced with either integral or semi-integralbridges. Bridge design, construction, and maintenance engineers; bridgedesign administrators; graduate level engineering students andstructural research professionals will all find this bookexceptionally informative for a wide range of highway bridgeapplications.

Book Field Testing of Integral Abutments

Download or read book Field Testing of Integral Abutments written by Robert E. Abendroth and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The objectives of this research program were to evaluate the state-of-art for the design of prestressed-concrete (PC), integralabutment bridges; to validate the assumptions that are incorporated in the current-design procedures for these types of bridges when they are subjected to thermal-loading conditions; and, as appropriate, to revise and improve the current-design procedures for this type of a bridge, as that design relates to the thermally-induced displacements of the abutments and the thermally-induced forces in the abutments and abutment piles. Two, skewed, PC girder, integral-abutment bridges in the State of Iowa were instrumented over a two-year period to measure structural behavior. Longitudinal and transverse displacements and rotation of the integral abutments, strains in the steel piles and in the PC girders, and temperature distributions were recorded throughout the monitoring period for both bridges. The coefficient of thermal expansion and contraction for the concrete in core specimens that were taken from 20 bridge decks and from several PC girders was experimentally measured at the 100%-dry and 100%-saturated conditions. The longitudinal displacements of the integral abutments correlated well with the recorded change in the bridge temperature. Total, longitudinal, pile strains exceeded the minimum, specified, yield strain of the steel for both bridges. Longitudinal strains in the PC girders were well within acceptable limits. The experimental data were used to calibrate and refine finite-element models of both bridges. Discrepancies were not fully explained for the differences between the predicted and measured, thermal expansion of the bridge and vertical rotations of the integral abutments.

Book Long Term Behavior of Integral Abutment Bridges

Download or read book Long Term Behavior of Integral Abutment Bridges written by Robert J. Frosch and published by Joint Transportation Research Program. This book was released on 2011-08-15 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integral abutment (IA) construction has become the preferred method over conventional construction for use with typical highway bridges. However, the use of these structures is limited due to state mandated length and skew limitations. To expand their applicability, studies were implemented to define limitations supported by rational analysis rather than simply engineering judgment. Previous research investigations have resulted in larger length limits and an overall better understanding of these structures. However, questions still remain regarding IA behavior; specifically questions regarding long-term behavior and effects of skew. To better define the behavior of these structures, a study was implemented to specifically investigate the long term behavior of IA bridges. First, a field monitoring program was implemented to observe and understand the in-service behavior of three integral abutment bridges. The results of the field investigation were used to develop and calibrate analytical models that adequately capture the long-term behavior. Second, a single-span, quarter-scale integral abutment bridge was constructed and tested to provide insight on the behavior of highly skewed structures. From the acquired knowledge from both the field and laboratory investigations, a parametric analysis was conducted to characterize the effects of a broad range of parameters on the behavior of integral abutment bridges. This study develops an improved understanding of the overall behavior of IA bridges. Based on the results of this study, modified length and skew limitations for integral abutment bridge are proposed. In addition, modeling recommendations and guidelines have been developed to aid designers and facilitate the increased use of integral abutment bridges.

Book The Effects of Temperature on Skewed Integral Abutment Bridges

Download or read book The Effects of Temperature on Skewed Integral Abutment Bridges written by Laura Marie Ryan and published by . This book was released on 2009 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Short and Long term Performance of a Skewed Integral Abutment Prestressed Concrete Bridge

Download or read book Short and Long term Performance of a Skewed Integral Abutment Prestressed Concrete Bridge written by Rami Ameer Bahjat and published by . This book was released on 2014 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study presents the behavior of a precast skewed integral abutment bridge (IAB) using the recently developed NEXT-F Beam section in particular. In order to understand the bridge response, a 3-dimensional finite element model of a bridge (Brimfield Bridge) was developed to examine the thermal effect on the response of the bridge structural components. Eighteen months of field monitoring including abutments displacements, abutment rotations, deck strains, and beam strains was conducted utilizing 136 strain gauges, 6 crackmeters, and 2 tiltmeters. The behavior of the NEXT beams during construction was examined by conducting hand calculation considering all factors that could affect strain readings captured by strain gauges embedded in the 6 beams. Parametric analysis and model validation were conducted considering the effect of soil conditions, distribution of thermal loads, and the coefficient of thermal expansion used for the analyses. Using the validated model, the effect pile orientation was investigated. All the results and illustration plots are presented in detail in this study. As a result of this study, the behavior of the NEXT beams during construction was explained. Long term behavior of the bridge was also explained using field data and FE model. Furthermore, it was concluded that the coefficient of thermal expansion of concrete and temperature variation along the bridge depth and transverse direction can have a significant effect on the strain readings and calculated response, respectively. Lastly, it was found that orienting piles with their web perpendicular on the bridge centerline or with their web perpendicular to the abutment centerline will result in small ratio of moment demand to moment capacity.

Book Behavior of Concrete Integral Abutment Bridges

Download or read book Behavior of Concrete Integral Abutment Bridges written by Jimin Huang and published by . This book was released on 2004 with total page 726 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experimental and Analytical Study of Integral abutment Bridges

Download or read book Experimental and Analytical Study of Integral abutment Bridges written by Brad Harold Sayers and published by . This book was released on 2000 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integral-abutment bridges eliminate the expansion joints that are generally used to accommodate bridge length changes due to daily and annual temperature variations. Additional stresses and displacements due to the thermal loading are induced in these indeterminate structures that are not typically associated with bridge structures supported on pins and rollers. The goal of this research was to determine the effects of the thermal loading on two integral-abutment bridges. Extensive field monitoring was conducted on two, in-service, skewed, integral-abutment bridges located in central Iowa. The experimental program included long-term monitoring of longitudinal and transverse abutment displacements, relative displacements of the superstructure over the pier caps, strains in selected steel HP-shaped piles supporting the abutments, strains in several PC girders, bridge member temperatures, and end fixity of selected piles and girders in the abutments. The experimental temperature and displacement data was used to calibrate an ANSYS, finite-element model for each of the two monitored bridge structures. Experimental strains were verified and maximum strains due to the thermal loading were predicted for various members using the finite-element models.

Book Transportation Research Record

Download or read book Transportation Research Record written by and published by . This book was released on 1983 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Atmospheric Emergencies

Download or read book Atmospheric Emergencies written by and published by . This book was released on 1974 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Long Term Behavior of Integral Abutment Bridges

Download or read book Long Term Behavior of Integral Abutment Bridges written by Matthew D. Lovell and published by . This book was released on 2011 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Atmospheric Emergencies

    Book Details:
  • Author : National Research Council (U.S.). Transportation Research Board
  • Publisher : Transportation Research Board National Research
  • Release : 1983
  • ISBN :
  • Pages : 562 pages

Download or read book Atmospheric Emergencies written by National Research Council (U.S.). Transportation Research Board and published by Transportation Research Board National Research. This book was released on 1983 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Streamlined Analysis and Design of Integrall Bridge Abutments

Download or read book Streamlined Analysis and Design of Integrall Bridge Abutments written by University of Massachusetts at Amherst. Transportation Center and published by . This book was released on 1998 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Skewed Bridges with Integral Abutments

Download or read book Skewed Bridges with Integral Abutments written by L. F. Greimann and published by . This book was released on 1982 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Extending Integral Concepts to Curved Bridge Systems

Download or read book Extending Integral Concepts to Curved Bridge Systems written by Saeed Eghtedar Doust and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: The behavior of integral abutment systems and the extension of their application to curved bridges are investigated. First, the stresses in the elements of a typical integral abutment are studied by conducting nonlinear finite element analysis using the software package Abaqus. The results are design recommendations for the details of such abutments. The effect of integral abutments on the responses of bridges is also investigated. Steel and concrete bridge systems are studied separately. The studied steel bridge systems are composed of composite I-girder superstructures and integral abutments supported on steel H-piles. A series of finite element studies for different bridge lengths and radii are conducted and the effects of several load cases on the bridges are studied. In these bridges, the stresses in the abutment piles are of critical importance from the design standpoint. The results show that horizontal curvature mitigates these stresses. The bridge movement is also studied and a procedure to find the end displacements of curved bridges is presented. Pile orientation is another significant design factor that is studied elaborately. The results indicate that, for straight bridges, the strong-axis pile bending yields lower levels of stress. A method for finding the optimum pile orientation in curved integral bridges is developed. The effect of different bearing types is also investigated. This investigation reveals the superior structural performance of elastomeric bearings compared to other bearing types. The concrete bridge systems that are studied consist of voided slab superstructures, integral abutments and concrete drilled shafts. A matrix of finite element studies is performed for different lengths and curvatures. Similar to steel I-girder bridges, it is concluded that horizontal curvature mitigates the internal forces of the abutment elements. The orientation of the concrete shafts is also examined which again shows the advantage of strong-axis orientation. Integral abutment bridges can have flexible piers integrally connected to the superstructure to eliminate all the bridge bearings. The effect of such integral piers on the internal forces of integral abutments is also examined. In these flexible piers, moment magnification can be of crucial significance. It is shown that choosing the integral abutment system reduces the magnification effects in the slender pier columns compared to jointed bridge systems.

Book Evaluation of Passive Force on Skewed Bridge Abutments with Controlled Low strength Material Backfill

Download or read book Evaluation of Passive Force on Skewed Bridge Abutments with Controlled Low strength Material Backfill written by Kevin Bjorn Wagstaff and published by . This book was released on 2016 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: To determine the relationship of passive force versus backwall displacement for a CLSM backfilled bridge abutment, two laboratory large-scale lateral load tests were conducted at skew angles of 0 and 30°. The model backwall was a 4.13 ft (1.26 m) wide and 2 ft (0.61 m) tall reinforced concrete block skewed to either 0 or 30°. The passive force-displacement curves for the two tests were hyperbolic in shape, and the displacement required to reach the peak passive resistance was approximately 0.75-2% of the wall height. The effect of skew angle on the magnitude of passive resistance in the CLSM backfill was much less significant than for conventional backfill materials. However, within displacements of 4-5% of the backwall height, the passive force-displacement curve reached a relatively constant residual or ultimate strength. The residual strength ranged from 20-40% of the measured peak passive resistance. The failure plane did not follow the logarithmic spiral pattern as the conventional backfill materials did. Instead, the failure plane was nearly linear and the failed wedge was displaced more like a block with very low compressive strains.