Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1990 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Statistics written by Jim Frost and published by Statistics by Jim Publishing. This book was released on 2024-09-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: BONUS! Hardcover edition contains a 30-page bonus chapter! Additional Summary Statistics and Methods Learn statistics without fear! Build a solid foundation in data analysis. Be confident that you understand what your data are telling you and that you can explain the results to others! I'll help you intuitively understand statistics by using simple language and deemphasizing formulas. This guide starts with an overview of statistics and why it is so important. We proceed to essential statistical skills and knowledge about different types of data, relationships, and distributions. Then we move to using inferential statistics to expand human knowledge, how it fits into the scientific method, and how to design and critique experiments. Learn the fundamentals of statistics: Why is the field of statistics so vital in our data-driven society? Interpret graphs and summary statistics. Find relationships between different types of variables. Understand the properties of data distributions. Use measures of central tendency and variability. Interpret correlations and percentiles. Use probability distributions to calculate probabilities. Learn about the normal and binomial distributions in depth. Grasp the differences between descriptive and inferential statistics. Use data collection methodologies properly and understand sample size considerations. Design and critique scientific experiments-whether it's your own or another researcher's. Free access to downloadable datasets to follow along with the examples.
Download or read book Learning Statistics with R written by Daniel Navarro and published by Lulu.com. This book was released on 2013-01-13 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Download or read book Spatial Analysis Methods and Practice written by George Grekousis and published by Cambridge University Press. This book was released on 2020-06-11 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory overview of spatial analysis and statistics through GIS, including worked examples and critical analysis of results.
Download or read book Advanced Statistics for the Behavioral Sciences written by Jonathon D. Brown and published by Springer. This book was released on 2019-04-30 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the importance of computer-generated statistical analyses in behavioral science research, particularly those using the R software environment. Statistical methods are being increasingly developed and refined by computer scientists, with expertise in writing efficient and elegant computer code. Unfortunately, many researchers lack this programming background, leaving them to accept on faith the black-box output that emerges from the sophisticated statistical models they frequently use. Building on the author’s previous volume, Linear Models in Matrix Form, this text bridges the gap between computer science and research application, providing easy-to-follow computer code for many statistical analyses using the R software environment. The text opens with a foundational section on linear algebra, then covers a variety of advanced topics, including robust regression, model selection based on bias and efficiency, nonlinear models and optimization routines, generalized linear models, and survival and time-series analysis. Each section concludes with a presentation of the computer code used to illuminate the analysis, as well as pointers to packages in R that can be used for similar analyses and nonstandard cases. The accessible code and breadth of topics make this book an ideal tool for graduate students or researchers in the behavioral sciences who are interested in performing advanced statistical analyses without having a sophisticated background in computer science and mathematics.
Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Download or read book Social Cultural and Behavioral Modeling written by Robert Thomson and published by Springer Nature. This book was released on 2020-10-10 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 13th International Conference on Social, Cultural, and Behavioral Modeling, SBP-BRiMS 2020, which was planned to take place in Washington, DC, USA. Due to the COVID-19 pandemic the conference was held online during October 18–21, 2020. The 33 full papers presented in this volume were carefully reviewed and selected from 66 submissions. A wide number of disciplines are represented including computer science, psychology, sociology, communication science, public health, bioinformatics, political science, and organizational science. Numerous types of computational methods are used, such as machine learning, language technology, social network analysis and visualization, agent-based simulation, and statistics.
Download or read book Applied Linear Statistical Models written by Michael H. Kutner and published by McGraw-Hill/Irwin. This book was released on 2005 with total page 1396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.
Download or read book Neuroergonomics and Cognitive Engineering written by Hasan Ayaz and published by AHFE International. This book was released on 2022-07-24 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuroergonomics and Cognitive Engineering Proceedings of the 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022), July 24–28, 2022, New York, USA
Download or read book Fuzzy Systems and Data Mining VI written by A.J. Tallón-Ballesteros and published by IOS Press. This book was released on 2020-11-13 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interdisciplinary field of fuzzy logic encompass applications in the electrical, industrial, chemical and engineering realms as well as in areas of management and environmental issues, while data mining covers new approaches to big data, massive data, and scalable, parallel and distributed algorithms. This book presents papers from the 6th International Conference on Fuzzy Systems and Data Mining (FSDM 2020). The conference was originally due to be held from 13-16 November 2020 in Xiamen, China, but was changed to an online conference held on the same dates due to ongoing restrictions connected with the COVID-19 pandemic. The annual FSDM conference provides a platform for knowledge exchange between international experts, researchers academics and delegates from industry. This year, the committee received 316 submissions, of which 76 papers were selected for inclusion in the conference; an acceptance rate of 24%. The conference covers four main areas: fuzzy theory; algorithms and systems, which includes topics like stability; foundations and control; and fuzzy applications, which are widely used and cover various types of processing as well as hardware and architecture for big data and time series. Providing a current overview of research and developments in fuzzy logic and data mining, the book will be of interest to all those working in the field of data science.
Download or read book Behavioral and Cognitive Impairments Across the Life Span written by Beatrice Arosio and published by Frontiers Media SA. This book was released on 2022-02-11 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Multiple Imputation of Missing Data in Practice written by Yulei He and published by CRC Press. This book was released on 2021-11-20 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis. Over the past 40 years or so, multiple imputation has gone through rapid development in both theories and applications. It is nowadays the most versatile, popular, and effective missing-data strategy that is used by researchers and practitioners across different fields. There is a strong need to better understand and learn about multiple imputation in the research and practical community. Accessible to a broad audience, this book explains statistical concepts of missing data problems and the associated terminology. It focuses on how to address missing data problems using multiple imputation. It describes the basic theory behind multiple imputation and many commonly-used models and methods. These ideas are illustrated by examples from a wide variety of missing data problems. Real data from studies with different designs and features (e.g., cross-sectional data, longitudinal data, complex surveys, survival data, studies subject to measurement error, etc.) are used to demonstrate the methods. In order for readers not only to know how to use the methods, but understand why multiple imputation works and how to choose appropriate methods, simulation studies are used to assess the performance of the multiple imputation methods. Example datasets and sample programming code are either included in the book or available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book). Key Features Provides an overview of statistical concepts that are useful for better understanding missing data problems and multiple imputation analysis Provides a detailed discussion on multiple imputation models and methods targeted to different types of missing data problems (e.g., univariate and multivariate missing data problems, missing data in survival analysis, longitudinal data, complex surveys, etc.) Explores measurement error problems with multiple imputation Discusses analysis strategies for multiple imputation diagnostics Discusses data production issues when the goal of multiple imputation is to release datasets for public use, as done by organizations that process and manage large-scale surveys with nonresponse problems For some examples, illustrative datasets and sample programming code from popular statistical packages (e.g., SAS, R, WinBUGS) are included in the book. For others, they are available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book)
Download or read book Monthly Weather Review written by and published by . This book was released on 1988 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book 11th International Symposium on Process Systems Engineering PSE2012 written by and published by Elsevier. This book was released on 2012-12-31 with total page 1803 pages. Available in PDF, EPUB and Kindle. Book excerpt: While the PSE community continues its focus on understanding, synthesizing, modeling, designing, simulating, analyzing, diagnosing, operating, controlling, managing, and optimizing a host of chemical and related industries using the systems approach, the boundaries of PSE research have expanded considerably over the years. While early PSE research was largely concerned with individual units and plants, the current research spans wide ranges of scales in size (molecules to processing units to plants to global multinational enterprises to global supply chain networks; biological cells to ecological webs) and time (instantaneous molecular interactions to months of plant operation to years of strategic planning). The changes and challenges brought about by increasing globalization and the the common global issues of energy, sustainability, and environment provide the motivation for the theme of PSE2012: Process Systems Engineering and Decision Support for the Flat World. Each theme includes an invited chapter based on the plenary presentation by an eminent academic or industrial researcher Reports on the state-of-the-art advances in the various fields of process systems engineering Addresses common global problems and the research being done to solve them
Download or read book Group and Crowd Behavior for Computer Vision written by Vittorio Murino and published by Academic Press. This book was released on 2017-04-18 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Group and Crowd Behavior for Computer Vision provides a multidisciplinary perspective on how to solve the problem of group and crowd analysis and modeling, combining insights from the social sciences with technological ideas in computer vision and pattern recognition. The book answers many unresolved issues in group and crowd behavior, with Part One providing an introduction to the problems of analyzing groups and crowds that stresses that they should not be considered as completely diverse entities, but as an aggregation of people. Part Two focuses on features and representations with the aim of recognizing the presence of groups and crowds in image and video data. It discusses low level processing methods to individuate when and where a group or crowd is placed in the scene, spanning from the use of people detectors toward more ad-hoc strategies to individuate group and crowd formations. Part Three discusses methods for analyzing the behavior of groups and the crowd once they have been detected, showing how to extract semantic information, predicting/tracking the movement of a group, the formation or disaggregation of a group/crowd and the identification of different kinds of groups/crowds depending on their behavior. The final section focuses on identifying and promoting datasets for group/crowd analysis and modeling, presenting and discussing metrics for evaluating the pros and cons of the various models and methods. This book gives computer vision researcher techniques for segmentation and grouping, tracking and reasoning for solving group and crowd modeling and analysis, as well as more general problems in computer vision and machine learning. - Presents the first book to cover the topic of modeling and analysis of groups in computer vision - Discusses the topics of group and crowd modeling from a cross-disciplinary perspective, using social science anthropological theories translated into computer vision algorithms - Focuses on group and crowd analysis metrics - Discusses real industrial systems dealing with the problem of analyzing groups and crowds
Download or read book Statistical Methods for Field and Laboratory Studies in Behavioral Ecology written by Scott Pardo and published by CRC Press. This book was released on 2018-03-05 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Methods for Field and Laboratory Studies in Behavioral Ecology focuses on how statistical methods may be used to make sense of behavioral ecology and other data. It presents fundamental concepts in statistical inference and intermediate topics such as multiple least squares regression and ANOVA. The objective is to teach students to recognize situations where various statistical methods should be used, understand the strengths and limitations of the methods, and to show how they are implemented in R code. Examples are based on research described in the literature of behavioral ecology, with data sets and analysis code provided. Features: This intermediate to advanced statistical methods text was written with the behavioral ecologist in mind Computer programs are provided, written in the R language. Datasets are also provided, mostly based, at least to some degree, on real studies. Methods and ideas discussed include multiple regression and ANOVA, logistic and Poisson regression, machine learning and model identification, time-to-event modeling, time series and stochastic modeling, game-theoretic modeling, multivariate methods, study design/sample size, and what to do when things go wrong. It is assumed that the reader has already had exposure to statistics through a first introductory course at least, and also has sufficient knowledge of R. However, some introductory material is included to aid the less initiated reader. Scott Pardo, Ph.D., is an accredited professional statistician (PStat®) by the American Statistical Association. Michael Pardo is a Ph.D. is a candidate in behavioral ecology at Cornell University, specializing in animal communication and social behavior.