Download or read book Learning for Decision and Control in Stochastic Networks written by Longbo Huang and published by Springer Nature. This book was released on 2023-07-21 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the Learning-Augmented Network Optimization (LANO) paradigm, which interconnects network optimization with the emerging AI theory and algorithms and has been receiving a growing attention in network research. The authors present the topic based on a general stochastic network optimization model, and review several important theoretical tools that are widely adopted in network research, including convex optimization, the drift method, and mean-field analysis. The book then covers several popular learning-based methods, i.e., learning-augmented drift, multi-armed bandit and reinforcement learning, along with applications in networks where the techniques have been successfully applied. The authors also provide a discussion on potential future directions and challenges.
Download or read book Introduction to Multi Armed Bandits written by Aleksandrs Slivkins and published by . This book was released on 2019-10-31 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-armed bandits is a rich, multi-disciplinary area that has been studied since 1933, with a surge of activity in the past 10-15 years. This is the first book to provide a textbook like treatment of the subject.
Download or read book Regret Analysis of Stochastic and Nonstochastic Multi armed Bandit Problems written by Sébastien Bubeck and published by Now Pub. This book was released on 2012 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, the focus is on two extreme cases in which the analysis of regret is particularly simple and elegant: independent and identically distributed payoffs and adversarial payoffs. Besides the basic setting of finitely many actions, it analyzes some of the most important variants and extensions, such as the contextual bandit model.
Download or read book Ultra Dense Networks for 5G and Beyond written by Trung Q. Duong and published by John Wiley & Sons. This book was released on 2019-01-31 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers comprehensive insight into the theory, models, and techniques of ultra-dense networks and applications in 5G and other emerging wireless networks The need for speed—and power—in wireless communications is growing exponentially. Data rates are projected to increase by a factor of ten every five years—and with the emerging Internet of Things (IoT) predicted to wirelessly connect trillions of devices across the globe, future mobile networks (5G) will grind to a halt unless more capacity is created. This book presents new research related to the theory and practice of all aspects of ultra-dense networks, covering recent advances in ultra-dense networks for 5G networks and beyond, including cognitive radio networks, massive multiple-input multiple-output (MIMO), device-to-device (D2D) communications, millimeter-wave communications, and energy harvesting communications. Clear and concise throughout, Ultra-Dense Networks for 5G and Beyond - Modelling, Analysis, and Applications offers a comprehensive coverage on such topics as network optimization; mobility, handoff control, and interference management; and load balancing schemes and energy saving techniques. It delves into the backhaul traffic aspects in ultra-dense networks and studies transceiver hardware impairments and power consumption models in ultra-dense networks. The book also examines new IoT, smart-grid, and smart-city applications, as well as novel modulation, coding, and waveform designs. One of the first books to focus solely on ultra-dense networks for 5G in a complete presentation Covers advanced architectures, self-organizing protocols, resource allocation, user-base station association, synchronization, and signaling Examines the current state of cell-free massive MIMO, distributed massive MIMO, and heterogeneous small cell architectures Offers network measurements, implementations, and demos Looks at wireless caching techniques, physical layer security, cognitive radio, energy harvesting, and D2D communications in ultra-dense networks Ultra-Dense Networks for 5G and Beyond - Modelling, Analysis, and Applications is an ideal reference for those who want to design high-speed, high-capacity communications in advanced networks, and will appeal to postgraduate students, researchers, and engineers in the field.
Download or read book Bandit Algorithms written by Tor Lattimore and published by Cambridge University Press. This book was released on 2020-07-16 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and rigorous introduction for graduate students and researchers, with applications in sequential decision-making problems.
Download or read book Handbook of Price Impact Modeling written by Kevin T Webster and published by CRC Press. This book was released on 2023-05-05 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Price Impact Modeling provides practitioners and students with a mathematical framework grounded in academic references to apply price impact models to quantitative trading and portfolio management. Automated trading is now the dominant form of trading across all frequencies. Furthermore, trading algorithm rise introduces new questions professionals must answer, for instance: How do stock prices react to a trading strategy? How to scale a portfolio considering its trading costs and liquidity risk? How to measure and improve trading algorithms while avoiding biases? Price impact models answer these novel questions at the forefront of quantitative finance. Hence, practitioners and students can use this Handbook as a comprehensive, modern view of systematic trading. For financial institutions, the Handbook’s framework aims to minimize the firm’s price impact, measure market liquidity risk, and provide a unified, succinct view of the firm’s trading activity to the C-suite via analytics and tactical research. The Handbook’s focus on applications and everyday skillsets makes it an ideal textbook for a master’s in finance class and students joining quantitative trading desks. Using price impact models, the reader learns how to: Build a market simulator to back test trading algorithms Implement closed-form strategies that optimize trading signals Measure liquidity risk and stress test portfolios for fire sales Analyze algorithm performance controlling for common trading biases Estimate price impact models using public trading tape Finally, the reader finds a primer on the database kdb+ and its programming language q, which are standard tools for analyzing high-frequency trading data at banks and hedge funds. Authored by a finance professional, this book is a valuable resource for quantitative researchers and traders.
Download or read book Encyclopedia of the Sciences of Learning written by Norbert M. Seel and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 3643 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past century, educational psychologists and researchers have posited many theories to explain how individuals learn, i.e. how they acquire, organize and deploy knowledge and skills. The 20th century can be considered the century of psychology on learning and related fields of interest (such as motivation, cognition, metacognition etc.) and it is fascinating to see the various mainstreams of learning, remembered and forgotten over the 20th century and note that basic assumptions of early theories survived several paradigm shifts of psychology and epistemology. Beyond folk psychology and its naïve theories of learning, psychological learning theories can be grouped into some basic categories, such as behaviorist learning theories, connectionist learning theories, cognitive learning theories, constructivist learning theories, and social learning theories. Learning theories are not limited to psychology and related fields of interest but rather we can find the topic of learning in various disciplines, such as philosophy and epistemology, education, information science, biology, and – as a result of the emergence of computer technologies – especially also in the field of computer sciences and artificial intelligence. As a consequence, machine learning struck a chord in the 1980s and became an important field of the learning sciences in general. As the learning sciences became more specialized and complex, the various fields of interest were widely spread and separated from each other; as a consequence, even presently, there is no comprehensive overview of the sciences of learning or the central theoretical concepts and vocabulary on which researchers rely. The Encyclopedia of the Sciences of Learning provides an up-to-date, broad and authoritative coverage of the specific terms mostly used in the sciences of learning and its related fields, including relevant areas of instruction, pedagogy, cognitive sciences, and especially machine learning and knowledge engineering. This modern compendium will be an indispensable source of information for scientists, educators, engineers, and technical staff active in all fields of learning. More specifically, the Encyclopedia provides fast access to the most relevant theoretical terms provides up-to-date, broad and authoritative coverage of the most important theories within the various fields of the learning sciences and adjacent sciences and communication technologies; supplies clear and precise explanations of the theoretical terms, cross-references to related entries and up-to-date references to important research and publications. The Encyclopedia also contains biographical entries of individuals who have substantially contributed to the sciences of learning; the entries are written by a distinguished panel of researchers in the various fields of the learning sciences.
Download or read book Control Systems and Reinforcement Learning written by Sean Meyn and published by Cambridge University Press. This book was released on 2022-06-09 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: A high school student can create deep Q-learning code to control her robot, without any understanding of the meaning of 'deep' or 'Q', or why the code sometimes fails. This book is designed to explain the science behind reinforcement learning and optimal control in a way that is accessible to students with a background in calculus and matrix algebra. A unique focus is algorithm design to obtain the fastest possible speed of convergence for learning algorithms, along with insight into why reinforcement learning sometimes fails. Advanced stochastic process theory is avoided at the start by substituting random exploration with more intuitive deterministic probing for learning. Once these ideas are understood, it is not difficult to master techniques rooted in stochastic control. These topics are covered in the second part of the book, starting with Markov chain theory and ending with a fresh look at actor-critic methods for reinforcement learning.
Download or read book Ultra Dense Networks for 5G and Beyond written by Trung Q. Duong and published by John Wiley & Sons. This book was released on 2019-04-15 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers comprehensive insight into the theory, models, and techniques of ultra-dense networks and applications in 5G and other emerging wireless networks The need for speed—and power—in wireless communications is growing exponentially. Data rates are projected to increase by a factor of ten every five years—and with the emerging Internet of Things (IoT) predicted to wirelessly connect trillions of devices across the globe, future mobile networks (5G) will grind to a halt unless more capacity is created. This book presents new research related to the theory and practice of all aspects of ultra-dense networks, covering recent advances in ultra-dense networks for 5G networks and beyond, including cognitive radio networks, massive multiple-input multiple-output (MIMO), device-to-device (D2D) communications, millimeter-wave communications, and energy harvesting communications. Clear and concise throughout, Ultra-Dense Networks for 5G and Beyond - Modelling, Analysis, and Applications offers a comprehensive coverage on such topics as network optimization; mobility, handoff control, and interference management; and load balancing schemes and energy saving techniques. It delves into the backhaul traffic aspects in ultra-dense networks and studies transceiver hardware impairments and power consumption models in ultra-dense networks. The book also examines new IoT, smart-grid, and smart-city applications, as well as novel modulation, coding, and waveform designs. One of the first books to focus solely on ultra-dense networks for 5G in a complete presentation Covers advanced architectures, self-organizing protocols, resource allocation, user-base station association, synchronization, and signaling Examines the current state of cell-free massive MIMO, distributed massive MIMO, and heterogeneous small cell architectures Offers network measurements, implementations, and demos Looks at wireless caching techniques, physical layer security, cognitive radio, energy harvesting, and D2D communications in ultra-dense networks Ultra-Dense Networks for 5G and Beyond - Modelling, Analysis, and Applications is an ideal reference for those who want to design high-speed, high-capacity communications in advanced networks, and will appeal to postgraduate students, researchers, and engineers in the field.
Download or read book Distributed Strategic Learning for Wireless Engineers written by Hamidou Tembine and published by CRC Press. This book was released on 2012-05-18 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although valued for its ability to allow teams to collaborate and foster coalitional behaviors among the participants, game theory’s application to networking systems is not without challenges. Distributed Strategic Learning for Wireless Engineers illuminates the promise of learning in dynamic games as a tool for analyzing network evolution and underlines the potential pitfalls and difficulties likely to be encountered. Establishing the link between several theories, this book demonstrates what is needed to learn strategic interaction in wireless networks under uncertainty, randomness, and time delays. It addresses questions such as: How much information is enough for effective distributed decision making? Is having more information always useful in terms of system performance? What are the individual learning performance bounds under outdated and imperfect measurement? What are the possible dynamics and outcomes if the players adopt different learning patterns? If convergence occurs, what is the convergence time of heterogeneous learning? What are the issues of hybrid learning? How can one develop fast and efficient learning schemes in scenarios where some players have more information than the others? What is the impact of risk-sensitivity in strategic learning systems? How can one construct learning schemes in a dynamic environment in which one of the players do not observe a numerical value of its own-payoffs but only a signal of it? How can one learn "unstable" equilibria and global optima in a fully distributed manner? The book provides an explicit description of how players attempt to learn over time about the game and about the behavior of others. It focuses on finite and infinite systems, where the interplay among the individual adjustments undertaken by the different players generates different learning dynamics, heterogeneous learning, risk-sensitive learning, and hybrid dynamics.
Download or read book Learning to Play written by Aske Plaat and published by Springer Nature. This book was released on 2020-12-23 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this textbook the author takes as inspiration recent breakthroughs in game playing to explain how and why deep reinforcement learning works. In particular he shows why two-person games of tactics and strategy fascinate scientists, programmers, and game enthusiasts and unite them in a common goal: to create artificial intelligence (AI). After an introduction to the core concepts, environment, and communities of intelligence and games, the book is organized into chapters on reinforcement learning, heuristic planning, adaptive sampling, function approximation, and self-play. The author takes a hands-on approach throughout, with Python code examples and exercises that help the reader understand how AI learns to play. He also supports the main text with detailed pointers to online machine learning frameworks, technical details for AlphaGo, notes on how to play and program Go and chess, and a comprehensive bibliography. The content is class-tested and suitable for advanced undergraduate and graduate courses on artificial intelligence and games. It's also appropriate for self-study by professionals engaged with applications of machine learning and with games development. Finally it's valuable for any reader engaged with the philosophical implications of artificial and general intelligence, games represent a modern Turing test of the power and limitations of AI.
Download or read book Reinforcement Learning second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Download or read book Mobile Health written by James M. Rehg and published by Springer. This book was released on 2017-07-12 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a comprehensive introduction to mHealth technology and is accessible to technology-oriented researchers and practitioners with backgrounds in computer science, engineering, statistics, and applied mathematics. The contributing authors include leading researchers and practitioners in the mHealth field. The book offers an in-depth exploration of the three key elements of mHealth technology: the development of on-body sensors that can identify key health-related behaviors (sensors to markers), the use of analytic methods to predict current and future states of health and disease (markers to predictors), and the development of mobile interventions which can improve health outcomes (predictors to interventions). Chapters are organized into sections, with the first section devoted to mHealth applications, followed by three sections devoted to the above three key technology areas. Each chapter can be read independently, but the organization of the entire book provides a logical flow from the design of on-body sensing technology, through the analysis of time-varying sensor data, to interactions with a user which create opportunities to improve health outcomes. This volume is a valuable resource to spur the development of this growing field, and ideally suited for use as a textbook in an mHealth course.
Download or read book From Bandits to Monte Carlo Tree Search written by Rmi Munos and published by Now Pub. This book was released on 2014 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers the optimism in the face of uncertainty principle applied to large scale optimization problems under finite numerical budget. The initial motivation for this research originated from the empirical success of the Monte-Carlo Tree Search method popularized in Computer Go and further extended to other games, optimization, and planning problems.
Download or read book Integrated Uncertainty in Knowledge Modelling and Decision Making written by Van-Nam Huynh and published by Springer. This book was released on 2015-10-08 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 4th International Symposium on Integrated Uncertainty in Knowledge Modeling and Decision Making, IUKM 2015, held in Nha Trang, Vietnam, in October 2015. The 40 revised full papers were carefully reviewed and selected from 58 submissions and are presented together with three keynote and invited talks. The papers provide a wealth of new ideas and report both theoretical and applied research on integrated uncertainty modeling and management
Download or read book Multi armed Bandit Allocation Indices written by John Gittins and published by John Wiley & Sons. This book was released on 2011-02-18 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1989 the first edition of this book set out Gittins' pioneering index solution to the multi-armed bandit problem and his subsequent investigation of a wide of sequential resource allocation and stochastic scheduling problems. Since then there has been a remarkable flowering of new insights, generalizations and applications, to which Glazebrook and Weber have made major contributions. This second edition brings the story up to date. There are new chapters on the achievable region approach to stochastic optimization problems, the construction of performance bounds for suboptimal policies, Whittle's restless bandits, and the use of Lagrangian relaxation in the construction and evaluation of index policies. Some of the many varied proofs of the index theorem are discussed along with the insights that they provide. Many contemporary applications are surveyed, and over 150 new references are included. Over the past 40 years the Gittins index has helped theoreticians and practitioners to address a huge variety of problems within chemometrics, economics, engineering, numerical analysis, operational research, probability, statistics and website design. This new edition will be an important resource for others wishing to use this approach.
Download or read book Advances in Intelligent Tutoring Systems written by Roger Nkambou and published by Springer Science & Business Media. This book was released on 2010-08-27 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: May the Forcing Functions be with You: The Stimulating World of AIED and ITS Research It is my pleasure to write the foreword for Advances in Intelligent Tutoring S- tems. This collection, with contributions from leading researchers in the field of artificial intelligence in education (AIED), constitutes an overview of the many challenging research problems that must be solved in order to build a truly intel- gent tutoring system (ITS). The book not only describes some of the approaches and techniques that have been explored to meet these challenges, but also some of the systems that have actually been built and deployed in this effort. As discussed in the Introduction (Chapter 1), the terms “AIED” and “ITS” are often used int- changeably, and there is a large overlap in the researchers devoted to exploring this common field. In this foreword, I will use the term “AIED” to refer to the - search area, and the term “ITS” to refer to the particular kind of system that AIED researchers build. It has often been said that AIED is “AI-complete” in that to produce a tutoring system as sophisticated and effective as a human tutor requires solving the entire gamut of artificial intelligence research (AI) problems.