EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Likelihood Methods in Survival Analysis

Download or read book Likelihood Methods in Survival Analysis written by Jun Ma and published by CRC Press. This book was released on 2024-10-01 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many conventional survival analysis methods, such as the Kaplan-Meier method for survival function estimation and the partial likelihood method for Cox model regression coefficients estimation, were developed under the assumption that survival times are subject to right censoring only. However, in practice, survival time observations may include interval-censored data, especially when the exact time of the event of interest cannot be observed. When interval-censored observations are present in a survival dataset, one generally needs to consider likelihood-based methods for inference. If the survival model under consideration is fully parametric, then likelihood-based methods impose neither theoretical nor computational challenges. However, if the model is semi-parametric, there will be difficulties in both theoretical and computational aspects. Likelihood Methods in Survival Analysis: With R Examples explores these challenges and provides practical solutions. It not only covers conventional Cox models where survival times are subject to interval censoring, but also extends to more complicated models, such as stratified Cox models, extended Cox models where time-varying covariates are present, mixture cure Cox models, and Cox models with dependent right censoring. The book also discusses non-Cox models, particularly the additive hazards model and parametric log-linear models for bivariate survival times where there is dependence among competing outcomes. Features Provides a broad and accessible overview of likelihood methods in survival analysis Covers a wide range of data types and models, from the semi-parametric Cox model with interval censoring through to parametric survival models for competing risks Includes many examples using real data to illustrate the methods Includes integrated R code for implementation of the methods Supplemented by a GitHub repository with datasets and R code The book will make an ideal reference for researchers and graduate students of biostatistics, statistics, and data science, whose interest in survival analysis extend beyond applications. It offers useful and solid training to those who wish to enhance their knowledge in the methodology and computational aspects of biostatistics.

Book Emerging Topics in Modeling Interval Censored Survival Data

Download or read book Emerging Topics in Modeling Interval Censored Survival Data written by Jianguo Sun and published by Springer Nature. This book was released on 2022-11-29 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book primarily aims to discuss emerging topics in statistical methods and to booster research, education, and training to advance statistical modeling on interval-censored survival data. Commonly collected from public health and biomedical research, among other sources, interval-censored survival data can easily be mistaken for typical right-censored survival data, which can result in erroneous statistical inference due to the complexity of this type of data. The book invites a group of internationally leading researchers to systematically discuss and explore the historical development of the associated methods and their computational implementations, as well as emerging topics related to interval-censored data. It covers a variety of topics, including univariate interval-censored data, multivariate interval-censored data, clustered interval-censored data, competing risk interval-censored data, data with interval-censored covariates, interval-censored data from electric medical records, and misclassified interval-censored data. Researchers, students, and practitioners can directly make use of the state-of-the-art methods covered in the book to tackle their problems in research, education, training and consultation.

Book Advanced Statistical Methods in Data Science

Download or read book Advanced Statistical Methods in Data Science written by Ding-Geng Chen and published by Springer. This book was released on 2016-11-30 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world. It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a full chapter for this book in order to disseminate the findings and promote further research collaborations in this area. This timely book offers new methods that impact advanced statistical model development in big-data sciences.

Book The Statistical Analysis of Interval censored Failure Time Data

Download or read book The Statistical Analysis of Interval censored Failure Time Data written by Jianguo Sun and published by Springer. This book was released on 2007-05-26 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.

Book The Frailty Model

    Book Details:
  • Author : Luc Duchateau
  • Publisher : Springer Science & Business Media
  • Release : 2007-10-23
  • ISBN : 038772835X
  • Pages : 329 pages

Download or read book The Frailty Model written by Luc Duchateau and published by Springer Science & Business Media. This book was released on 2007-10-23 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Readers will find in the pages of this book a treatment of the statistical analysis of clustered survival data. Such data are encountered in many scientific disciplines including human and veterinary medicine, biology, epidemiology, public health and demography. A typical example is the time to death in cancer patients, with patients clustered in hospitals. Frailty models provide a powerful tool to analyze clustered survival data. In this book different methods based on the frailty model are described and it is demonstrated how they can be used to analyze clustered survival data. All programs used for these examples are available on the Springer website.

Book Penalized M estimation for Partly Linear Transformation Models with Current Status Data

Download or read book Penalized M estimation for Partly Linear Transformation Models with Current Status Data written by Shuangge Ma and published by . This book was released on 2004 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bayesian Survival Analysis

    Book Details:
  • Author : Joseph G. Ibrahim
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 1475734476
  • Pages : 494 pages

Download or read book Bayesian Survival Analysis written by Joseph G. Ibrahim and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. It presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all from the health sciences, including cancer, AIDS, and the environment.

Book Survival Analysis in Medicine and Genetics

Download or read book Survival Analysis in Medicine and Genetics written by Jialiang Li and published by CRC Press. This book was released on 2013-06-04 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using real data sets throughout, Survival Analysis in Medicine and Genetics introduces the latest methods for analyzing high-dimensional survival data. It provides thorough coverage of recent statistical developments in the medical and genetics fields. The text mainly addresses special concerns of the survival model. After covering the fundamentals, it discusses interval censoring, nonparametric and semiparametric hazard regression, multivariate survival data analysis, the sub-distribution method for competing risks data, the cure rate model, and Bayesian inference methods. The authors then focus on time-dependent diagnostic medicine and high-dimensional genetic data analysis. Many of the methods are illustrated with clinical examples. Emphasizing the applications of survival analysis techniques in genetics, this book presents a statistical framework for burgeoning research in this area and offers a set of established approaches for statistical analysis. It reveals a new way of looking at how predictors are associated with censored survival time and extracts novel statistical genetic methods for censored survival time outcome from the vast amount of research results in genomics.

Book Introduction to Empirical Processes and Semiparametric Inference

Download or read book Introduction to Empirical Processes and Semiparametric Inference written by Michael R. Kosorok and published by Springer Science & Business Media. This book was released on 2007-12-29 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.

Book Journal of the American Statistical Association

Download or read book Journal of the American Statistical Association written by American Statistical Association and published by . This book was released on 1997 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational and Methodological Statistics and Biostatistics

Download or read book Computational and Methodological Statistics and Biostatistics written by Andriëtte Bekker and published by Springer Nature. This book was released on 2020-08-10 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the statistical domain, certain topics have received considerable attention during the last decade or so, necessitated by the growth and evolution of data and theoretical challenges. This growth has invariably been accompanied by computational advancement, which has presented end users as well as researchers with the necessary opportunities to handle data and implement modelling solutions for statistical purposes. Showcasing the interplay among a variety of disciplines, this book offers pioneering theoretical and applied solutions to practice-oriented problems. As a carefully curated collection of prominent international thought leaders, it fosters collaboration between statisticians and biostatisticians and provides an array of thought processes and tools to its readers. The book thereby creates an understanding and appreciation of recent developments as well as an implementation of these contributions within the broader framework of both academia and industry. Computational and Methodological Statistics and Biostatistics is composed of three main themes: • Recent developments in theory and applications of statistical distributions;• Recent developments in supervised and unsupervised modelling;• Recent developments in biostatistics; and also features programming code and accompanying algorithms to enable readers to replicate and implement methodologies. Therefore, this monograph provides a concise point of reference for a variety of current trends and topics within the statistical domain. With interdisciplinary appeal, it will be useful to researchers, graduate students, and practitioners in statistics, biostatistics, clinical methodology, geology, data science, and actuarial science, amongst others.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2005 with total page 1852 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mixed Effects Models for Complex Data

Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.

Book Survival Analysis with Long Term Survivors

Download or read book Survival Analysis with Long Term Survivors written by Ross A. Maller and published by John Wiley & Sons. This book was released on 1996 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to suggest and exemplify a systematic methodology for analysing survival data which contains "immune", or "cured" individuals, denoted generically as "long-term survivors". Such data occurs in medical and epidemiological applications, where the intention may be to identify whether or not cured or immune individuals are present in a population, perhaps as a result of treatments given; in the analysis of recidivism data in criminology, where the intentions are similar with respect to prisoners released from and possibly returning to prison; and in many other areas where followup data is available on individuals, with the possibility that not all suffer the event under investigation. Both nonparametric and parametric methods are proposed and developed. The effects of covariate information can be assessed via a kind of generalised linear framework in the parametric analyses. The proposed methodologies are supported by asymptotic analyses and simulations of real situations. While these theoretical underpinnings are presented in reasonable rigour and detail, the book is aimed very much at the practitioner who wishes to analyse survival data with (or even without) immunes.

Book Cure Models

    Book Details:
  • Author : Yingwei Peng
  • Publisher : CRC Press
  • Release : 2021-03-22
  • ISBN : 0429629680
  • Pages : 268 pages

Download or read book Cure Models written by Yingwei Peng and published by CRC Press. This book was released on 2021-03-22 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cure Models: Methods, Applications and Implementation is the first book in the last 25 years that provides a comprehensive and systematic introduction to the basics of modern cure models, including estimation, inference, and software. This book is useful for statistical researchers and graduate students, and practitioners in other disciplines to have a thorough review of modern cure model methodology and to seek appropriate cure models in applications. The prerequisites of this book include some basic knowledge of statistical modeling, survival models, and R and SAS for data analysis. The book features real-world examples from clinical trials and population-based studies and a detailed introduction to R packages, SAS macros, and WinBUGS programs to fit some cure models. The main topics covered include the foundation of statistical estimation and inference of cure models for independent and right-censored survival data, cure modeling for multivariate, recurrent-event, and competing-risks survival data, and joint modeling with longitudinal data, statistical testing for the existence and difference of cure rates and sufficient follow-up, new developments in Bayesian cure models, applications of cure models in public health research and clinical trials.

Book Semiparametric Regression

Download or read book Semiparametric Regression written by David Ruppert and published by Cambridge University Press. This book was released on 2003-07-14 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiparametric regression is concerned with the flexible incorporation of non-linear functional relationships in regression analyses. Any application area that benefits from regression analysis can also benefit from semiparametric regression. Assuming only a basic familiarity with ordinary parametric regression, this user-friendly book explains the techniques and benefits of semiparametric regression in a concise and modular fashion. The authors make liberal use of graphics and examples plus case studies taken from environmental, financial, and other applications. They include practical advice on implementation and pointers to relevant software. The 2003 book is suitable as a textbook for students with little background in regression as well as a reference book for statistically oriented scientists such as biostatisticians, econometricians, quantitative social scientists, epidemiologists, with a good working knowledge of regression and the desire to begin using more flexible semiparametric models. Even experts on semiparametric regression should find something new here.

Book American Doctoral Dissertations

Download or read book American Doctoral Dissertations written by and published by . This book was released on 1996 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: