EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Matrix Theory and Applications for Scientists and Engineers

Download or read book Matrix Theory and Applications for Scientists and Engineers written by Alexander Graham and published by Courier Dover Publications. This book was released on 2018-07-18 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this comprehensive text on matrix theory and its applications, Graham explores the underlying principles as well as the numerous applications of the various concepts presented. Includes numerous problems with solutions. 1979 edition.

Book Matrix Analysis for Scientists and Engineers

Download or read book Matrix Analysis for Scientists and Engineers written by Alan J. Laub and published by SIAM. This book was released on 2005-01-01 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Prerequisites for using this text are knowledge of calculus and some previous exposure to matrices and linear algebra, including, for example, a basic knowledge of determinants, singularity of matrices, eigenvalues and eigenvectors, and positive definite matrices. There are exercises at the end of each chapter."--BOOK JACKET.

Book Matrix Operations for Engineers and Scientists

Download or read book Matrix Operations for Engineers and Scientists written by Alan Jeffrey and published by Springer Science & Business Media. This book was released on 2010-09-05 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designed to emphasize the theory, that at the same time avoid distractions caused by unnecessary numerical calculations. Hence, examples and exercises in this book have been constructed in such a way that wherever calculations are necessary they are straightforward. For example, when a characteristic equation occurs, its roots (the eigenvalues of a matrix) can be found by inspection. The author of this book is Alan Jeffrey, Emeritus Professor of mathematics at the University of Newcastle upon Tyne. He has given courses on engineering mathematics at UK and US Universities.

Book A First Course in Random Matrix Theory

Download or read book A First Course in Random Matrix Theory written by Marc Potters and published by Cambridge University Press. This book was released on 2020-12-03 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.

Book Matrix Analysis and Applications

Download or read book Matrix Analysis and Applications written by Xian-Da Zhang and published by Cambridge University Press. This book was released on 2017-10-05 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory, methods and applications of matrix analysis are presented here in a novel theoretical framework.

Book Matrix Logic

    Book Details:
  • Author : A. Stern
  • Publisher : Elsevier
  • Release : 2014-06-28
  • ISBN : 1483295494
  • Pages : 224 pages

Download or read book Matrix Logic written by A. Stern and published by Elsevier. This book was released on 2014-06-28 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this pioneering work, the author develops a fundamental formulation of logic in terms of theory of matrices and vector spaces. The discovery of matrix logic represents a landmark in the further formalization of logic. For the first time the power of direct mathematical computation is applied to the whole set of logic operations, allowing the derivation of both the classical and modal logics from the same formal base.The new formalism allows the author to enlarge the alphabet of the truth-values with negative logic antivalues and to link matrix logic descriptions with the Dirac formulation of quantum theory - a result having fundamental implications and repercussions for science as a whole.As a unified language which permits a logical examination of the underlying phenomena of quantum field theory and vice versa, matrix logic opens new avenues for the study of fundamental interactions and gives rise to a revolutionary conclusion that physics as such can be viewed and studied as a logic in the fundamental sense.Finally, modelling itself on exact sciences, matrix logic does not refute the classical logic but instead incorporates it as a special deterministic limit. The book requires multidisciplinary knowledge and will be of interest to physicists, mathematicians, computer scientists and engineers.

Book Matrix  Numerical  and Optimization Methods in Science and Engineering

Download or read book Matrix Numerical and Optimization Methods in Science and Engineering written by Kevin W. Cassel and published by Cambridge University Press. This book was released on 2021-03-04 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: Address vector and matrix methods necessary in numerical methods and optimization of linear systems in engineering with this unified text. Treats the mathematical models that describe and predict the evolution of our processes and systems, and the numerical methods required to obtain approximate solutions. Explores the dynamical systems theory used to describe and characterize system behaviour, alongside the techniques used to optimize their performance. Integrates and unifies matrix and eigenfunction methods with their applications in numerical and optimization methods. Consolidating, generalizing, and unifying these topics into a single coherent subject, this practical resource is suitable for advanced undergraduate students and graduate students in engineering, physical sciences, and applied mathematics.

Book Matrices

    Book Details:
  • Author : Denis Serre
  • Publisher : Springer Science & Business Media
  • Release : 2010-10-26
  • ISBN : 1441976833
  • Pages : 291 pages

Download or read book Matrices written by Denis Serre and published by Springer Science & Business Media. This book was released on 2010-10-26 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.

Book Combinatorial Matrix Theory

Download or read book Combinatorial Matrix Theory written by Richard A. Brualdi and published by Birkhäuser. This book was released on 2018-03-31 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanović delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Ángeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.

Book The Theory of Matrices

    Book Details:
  • Author : Peter Lancaster
  • Publisher : Academic Press
  • Release : 1985-05-28
  • ISBN : 9780124355606
  • Pages : 590 pages

Download or read book The Theory of Matrices written by Peter Lancaster and published by Academic Press. This book was released on 1985-05-28 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix algebra; Determinants, inverse matrices, and rank; Linear, euclidean, and unitary spaces; Linear transformations and matrices; Linear transformations in unitary spaces and simple matrices; The jordan canonical form: a geometric approach; Matrix polynomials and normal forms; The variational method; Functions of matrices; Norms and bounds for eigenvalues; Perturbation theory; Linear matrices equations and generalized inverses; Stability problems; Matrix polynomials; Nonnegative matrices.

Book Kronecker Products and Matrix Calculus with Applications

Download or read book Kronecker Products and Matrix Calculus with Applications written by Alexander Graham and published by Courier Dover Publications. This book was released on 2018-06-13 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhanced by many worked examples, problems, and solutions, this in-depth text is suitable for undergraduates and presents a great deal of information previously only available in specialized and hard-to-find texts. 1981 edition.

Book Matrices  Moments and Quadrature with Applications

Download or read book Matrices Moments and Quadrature with Applications written by Gene H. Golub and published by Princeton University Press. This book was released on 2009-12-07 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.

Book Matrix Analysis

    Book Details:
  • Author : Roger A. Horn
  • Publisher : Cambridge University Press
  • Release : 1990-02-23
  • ISBN : 9780521386326
  • Pages : 580 pages

Download or read book Matrix Analysis written by Roger A. Horn and published by Cambridge University Press. This book was released on 1990-02-23 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix Analysis presents the classical and recent results for matrix analysis that have proved to be important to applied mathematics.

Book Feedback Systems

Download or read book Feedback Systems written by Karl Johan Åström and published by Princeton University Press. This book was released on 2021-02-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory

Book Elementary Fuzzy Matrix Theory and Fuzzy Models for Social Scientists

Download or read book Elementary Fuzzy Matrix Theory and Fuzzy Models for Social Scientists written by W. B. Vasantha Kandasamy, Florentin Smarandache, K. Ilanthenral and published by Infinite Study. This book was released on 2007-03-01 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonnegative Matrices in the Mathematical Sciences

Download or read book Nonnegative Matrices in the Mathematical Sciences written by Abraham Berman and published by Academic Press. This book was released on 2014-05-10 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonnegative Matrices in the Mathematical Sciences provides information pertinent to the fundamental aspects of the theory of nonnegative matrices. This book describes selected applications of the theory to numerical analysis, probability, economics, and operations research. Organized into 10 chapters, this book begins with an overview of the properties of nonnegative matrices. This text then examines the inverse-positive matrices. Other chapters consider the basic approaches to the study of nonnegative matrices, namely, geometrical and combinatorial. This book discusses as well some useful ideas from the algebraic theory of semigroups and considers a canonical form for nonnegative idempotent matrices and special types of idempotent matrices. The final chapter deals with the linear complementary problem (LCP). This book is a valuable resource for mathematical economists, mathematical programmers, statisticians, mathematicians, and computer scientists.

Book Elementary Matrix Theory

Download or read book Elementary Matrix Theory written by Howard Eves and published by Courier Corporation. This book was released on 2012-04-30 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum. This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineering, business and the social sciences, as well as math majors. Although the treatment is fundamental — no previous courses in abstract algebra are required — it is also flexible: each chapter includes special material for advanced students interested in deeper study or application of the theory. The book begins with preliminary remarks that set the stage for the author's concrete approach to matrix theory and the consideration of matrices as hypercomplex numbers. Dr. Eves then goes on to cover fundamental concepts and operations, equivalence, determinants, matrices with polynomial elements, similarity and congruence. A final optional chapter considers matrix theory from a generalized or abstract viewpoint, extending it to arbitrary number rings and fields, vector spaces and linear transformations of vector spaces. The author's concluding remarks direct the interested student to possible avenues of further study in matrix theory, while an extensive bibliography rounds out the book. Students of matrix theory will especially appreciate the many excellent problems (solutions not provided) included in each chapter, which are not just routine calculation exercises, but involve proof and extension of the concepts and material of the text. Scientists, engineers, economists and others whose work involves this important area of mathematics, will welcome the variety of special types of matrices and determinants discussed, which make the book not only a comprehensive introduction to the field, but a valuable resource and reference work.