Download or read book Matrix Operations for Engineers and Scientists written by Alan Jeffrey and published by Springer Science & Business Media. This book was released on 2010-09-05 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designed to emphasize the theory, that at the same time avoid distractions caused by unnecessary numerical calculations. Hence, examples and exercises in this book have been constructed in such a way that wherever calculations are necessary they are straightforward. For example, when a characteristic equation occurs, its roots (the eigenvalues of a matrix) can be found by inspection. The author of this book is Alan Jeffrey, Emeritus Professor of mathematics at the University of Newcastle upon Tyne. He has given courses on engineering mathematics at UK and US Universities.
Download or read book Matrix Numerical and Optimization Methods in Science and Engineering written by Kevin W. Cassel and published by Cambridge University Press. This book was released on 2021-03-04 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: Address vector and matrix methods necessary in numerical methods and optimization of linear systems in engineering with this unified text. Treats the mathematical models that describe and predict the evolution of our processes and systems, and the numerical methods required to obtain approximate solutions. Explores the dynamical systems theory used to describe and characterize system behaviour, alongside the techniques used to optimize their performance. Integrates and unifies matrix and eigenfunction methods with their applications in numerical and optimization methods. Consolidating, generalizing, and unifying these topics into a single coherent subject, this practical resource is suitable for advanced undergraduate students and graduate students in engineering, physical sciences, and applied mathematics.
Download or read book Mathematical Methods for Engineers and Scientists 2 written by Kwong-Tin Tang and published by Springer Science & Business Media. This book was released on 2006-11-30 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student-oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to help students feel comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.
Download or read book Mathematical Techniques for Engineers and Scientists written by Larry C. Andrews and published by SPIE Press. This book was released on 2003 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This self-study text for practicing engineers and scientists explains the mathematical tools that are required for advanced technological applications, but are often not covered in undergraduate school. The authors (University of Central Florida) describe special functions, matrix methods, vector operations, the transformation laws of tensors, the analytic functions of a complex variable, integral transforms, partial differential equations, probability theory, and random processes. The book could also serve as a supplemental graduate text."--Memento.
Download or read book Methods of Applied Mathematics for Engineers and Scientists written by Tomas B. Co and published by Cambridge University Press. This book was released on 2013-06-28 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engineering mathematics textbook is rich with examples, applications and exercises, and emphasises applying matrices.
Download or read book Mathematical Methods for Engineers and Scientists 1 written by Kwong-Tin Tang and published by Springer Science & Business Media. This book was released on 2006-11-10 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topics of this set of student-oriented books are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to help students feel comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.
Download or read book Matrix Analysis for Scientists and Engineers written by Alan J. Laub and published by SIAM. This book was released on 2005-01-01 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Prerequisites for using this text are knowledge of calculus and some previous exposure to matrices and linear algebra, including, for example, a basic knowledge of determinants, singularity of matrices, eigenvalues and eigenvectors, and positive definite matrices. There are exercises at the end of each chapter."--BOOK JACKET.
Download or read book Design Structure Matrix Methods and Applications written by Steven D. Eppinger and published by MIT Press. This book was released on 2012-05-25 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a powerful and flexible network modeling tool for developing and understanding complex systems, with many examples from a range of industries. Design structure matrix (DSM) is a straightforward and flexible modeling technique that can be used for designing, developing, and managing complex systems. DSM offers network modeling tools that represent the elements of a system and their interactions, thereby highlighting the system's architecture (or designed structure). Its advantages include compact format, visual nature, intuitive representation, powerful analytical capacity, and flexibility. Used primarily so far in the area of engineering management, DSM is increasingly being applied to complex issues in health care management, financial systems, public policy, natural sciences, and social systems. This book offers a clear and concise explanation of DSM methods for practitioners and researchers.
Download or read book Matrix Methods written by Richard Bronson and published by Academic Press. This book was released on 2008-09-04 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix Methods: Applied Linear Algebra, Third Edition, as a textbook, provides a unique and comprehensive balance between the theory and computation of matrices. The application of matrices is not just for mathematicians. The use by other disciplines has grown dramatically over the years in response to the rapid changes in technology. Matrix methods is the essence of linear algebra and is what is used to help physical scientists; chemists, physicists, engineers, statisticians, and economists solve real world problems. - Applications like Markov chains, graph theory and Leontief Models are placed in early chapters - Readability- The prerequisite for most of the material is a firm understanding of algebra - New chapters on Linear Programming and Markov Chains - Appendix referencing the use of technology, with special emphasis on computer algebra systems (CAS) MATLAB
Download or read book Numerical Methods for Engineers and Scientists Using MATLAB written by Ramin S. Esfandiari and published by CRC Press. This book was released on 2017-04-25 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a pragmatic, methodical and easy-to-follow presentation of numerical methods and their effective implementation using MATLAB, which is introduced at the outset. The author introduces techniques for solving equations of a single variable and systems of equations, followed by curve fitting and interpolation of data. The book also provides detailed coverage of numerical differentiation and integration, as well as numerical solutions of initial-value and boundary-value problems. The author then presents the numerical solution of the matrix eigenvalue problem, which entails approximation of a few or all eigenvalues of a matrix. The last chapter is devoted to numerical solutions of partial differential equations that arise in engineering and science. Each method is accompanied by at least one fully worked-out example showing essential details involved in preliminary hand calculations, as well as computations in MATLAB.
Download or read book A First Course in Random Matrix Theory written by Marc Potters and published by Cambridge University Press. This book was released on 2020-12-03 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.
Download or read book Mathematical Methods for Engineers and Scientists 3 written by Kwong-Tin Tang and published by Springer Science & Business Media. This book was released on 2007-01-10 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous examples, completely worked out, together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable in using advanced mathematical tools in junior, senior, and beginning graduate courses.
Download or read book Matrix Methods in the Design Analysis of Mechanisms and Multibody Systems written by John J. Uicker and published by Cambridge University Press. This book was released on 2013-04-15 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an integrated approach to kinematic and dynamic analysis. The matrix techniques presented are general and applicable to two- or three-dimensional systems. The techniques lend themselves to programming and digital computation and can be a usable tool for designers, and are applicable to the design analysis of all multibody mechanical systems.
Download or read book Matrix Methods of Structural Analysis written by R. K. Livesley and published by Elsevier. This book was released on 2013-10-22 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix Methods of Structural Analysis, 2nd Edition deals with the use of matrix methods as standard tools for solving most non-trivial problems of structural analysis. Emphasis is on skeletal structures and the use of a more general finite element approach. The methods covered have natural links with techniques for automatic redundant selection in elastic analysis. This book is comprised of 11 chapters and begins with an introduction to the concepts and notation of matrix algebra, along with the value of a systematic approach; structure as an assembly of elements; boundaries and nodes; linearity and superposition; and how analytical methods are built up. The discussion then turns to the variables which form the basis of much of structural analysis, as well as the most important relationships between them. Subsequent chapters focus on the elastic properties of single elements; the equilibrium or displacement method; the equilibrium equations of a complete structure; plastic analysis and design; transfer matrices; and the analysis of non-linear structures. The compatibility or force method is also described. The final chapter considers the limits imposed by the size and accuracy of the computer used in structural analysis and how they can be extended. This monograph will be of interest to structural engineers and students of engineering.
Download or read book Numerical Methods for Engineers and Scientists Using MATLAB written by Ramin S. Esfandiari and published by CRC Press. This book was released on 2013-06-04 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed to benefit scientific and engineering applications, Numerical Methods for Engineers and Scientists Using MATLAB® focuses on the fundamentals of numerical methods while making use of MATLAB software. The book introduces MATLAB early on and incorporates it throughout the chapters to perform symbolic, graphical, and numerical tasks. The text covers a variety of methods from curve fitting to solving ordinary and partial differential equations. Provides fully worked-out examples showing all details Confirms results through the execution of the user-defined function or the script file Executes built-in functions for re-confirmation, when available Generates plots regularly to shed light on the soundness and significance of the numerical results Created to be user-friendly and easily understandable, Numerical Methods for Engineers and Scientists Using MATLAB® provides background material and a broad introduction to the essentials of MATLAB, specifically its use with numerical methods. Building on this foundation, it introduces techniques for solving equations and focuses on curve fitting and interpolation techniques. It addresses numerical differentiation and integration methods, presents numerical methods for solving initial-value and boundary-value problems, and discusses the matrix eigenvalue problem, which entails numerical methods to approximate a few or all eigenvalues of a matrix. The book then deals with the numerical solution of partial differential equations, specifically those that frequently arise in engineering and science. The book presents a user-defined function or a MATLAB script file for each method, followed by at least one fully worked-out example. When available, MATLAB built-in functions are executed for confirmation of the results. A large set of exercises of varying levels of difficulty appears at the end of each chapter. The concise approach with strong, up-to-date MATLAB integration provided by this book affords readers a thorough knowledge of the fundamentals of numerical methods utilized in various disciplines.
Download or read book Advanced Linear Algebra for Engineers with MATLAB written by Sohail A. Dianat and published by CRC Press. This book was released on 2017-12-19 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arming readers with both theoretical and practical knowledge, Advanced Linear Algebra for Engineers with MATLAB® provides real-life problems that readers can use to model and solve engineering and scientific problems in fields ranging from signal processing and communications to electromagnetics and social and health sciences. Facilitating a unique understanding of rapidly evolving linear algebra and matrix methods, this book: Outlines the basic concepts and definitions behind matrices, matrix algebra, elementary matrix operations, and matrix partitions, describing their potential use in signal and image processing applications Introduces concepts of determinants, inverses, and their use in solving linear equations that result from electrical and mechanical-type systems Presents special matrices, linear vector spaces, and fundamental principles of orthogonality, using an appropriate blend of abstract and concrete examples and then discussing associated applications to enhance readers’ visualization of presented concepts Discusses linear operators, eigenvalues, and eigenvectors, and explores their use in matrix diagonalization and singular value decomposition Extends presented concepts to define matrix polynomials and compute functions using several well-known methods, such as Sylvester’s expansion and Cayley-Hamilton Introduces state space analysis and modeling techniques for discrete and continuous linear systems, and explores applications in control and electromechanical systems, to provide a complete solution for the state space equation Shows readers how to solve engineering problems using least square, weighted least square, and total least square techniques Offers a rich selection of exercises and MATLAB® assignments that build a platform to enhance readers’ understanding of the material Striking the appropriate balance between theory and real-life applications, this book provides both advanced students and professionals in the field with a valuable reference that they will continually consult.
Download or read book Introduction to Applied Linear Algebra written by Stephen Boyd and published by Cambridge University Press. This book was released on 2018-06-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.