Download or read book Matrix and Tensor Calculus written by Aristotle D. Michal and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers a working knowledge of the fundamentals of matrix and tensor calculus. Relevant to several fields, particularly aeronautical engineering, the text skillfully combines mathematical statements with practical applications. 1947 edition.
Download or read book Tensor Calculus for Physics written by Dwight E. Neuenschwander and published by JHU Press. This book was released on 2015 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is an ideal companion for courses such as mathematical methods of physics, classical mechanics, electricity and magnetism, and relativity.--Gary White, editor of The Physics Teacher "American Journal of Physics"
Download or read book Matrix and Tensor Calculus written by Aristotle D. Michal and published by . This book was released on 1947 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Tensor Spaces and Numerical Tensor Calculus written by Wolfgang Hackbusch and published by Springer Nature. This book was released on 2019-12-16 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.
Download or read book Einstein s Theory written by Øyvind Grøn and published by Springer Science & Business Media. This book was released on 2011-08-30 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the theory of relativity and the mathematics used in its processes. Three elements of the book make it stand apart from previously published books on the theory of relativity. First, the book starts at a lower mathematical level than standard books with tensor calculus of sufficient maturity to make it possible to give detailed calculations of relativistic predictions of practical experiments. Self-contained introductions are given, for example vector calculus, differential calculus and integrations. Second, in-between calculations have been included, making it possible for the non-technical reader to follow step-by-step calculations. Thirdly, the conceptual development is gradual and rigorous in order to provide the inexperienced reader with a philosophically satisfying understanding of the theory. The goal of this book is to provide the reader with a sound conceptual understanding of both the special and general theories of relativity, and gain an insight into how the mathematics of the theory can be utilized to calculate relativistic effects.
Download or read book Manifolds Tensors and Forms written by Paul Renteln and published by Cambridge University Press. This book was released on 2014 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.
Download or read book Matrix Calculus Kronecker Product And Tensor Product A Practical Approach To Linear Algebra Multilinear Algebra And Tensor Calculus With Software Implementations Third Edition written by Yorick Hardy and published by World Scientific. This book was released on 2019-04-08 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our self-contained volume provides an accessible introduction to linear and multilinear algebra as well as tensor calculus. Besides the standard techniques for linear algebra, multilinear algebra and tensor calculus, many advanced topics are included where emphasis is placed on the Kronecker product and tensor product. The Kronecker product has widespread applications in signal processing, discrete wavelets, statistical physics, Hopf algebra, Yang-Baxter relations, computer graphics, fractals, quantum mechanics, quantum computing, entanglement, teleportation and partial trace. All these fields are covered comprehensively.The volume contains many detailed worked-out examples. Each chapter includes useful exercises and supplementary problems. In the last chapter, software implementations are provided for different concepts. The volume is well suited for pure and applied mathematicians as well as theoretical physicists and engineers.New topics added to the third edition are: mutually unbiased bases, Cayley transform, spectral theorem, nonnormal matrices, Gâteaux derivatives and matrices, trace and partial trace, spin coherent states, Clebsch-Gordan series, entanglement, hyperdeterminant, tensor eigenvalue problem, Carleman matrix and Bell matrix, tensor fields and Ricci tensors, and software implementations.
Download or read book Vector and Tensor Analysis with Applications written by A. I. Borisenko and published by Courier Corporation. This book was released on 2012-08-28 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.
Download or read book Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds written by Uwe Mühlich and published by Springer. This book was released on 2017-04-18 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.
Download or read book Tensor Analysis on Manifolds written by Richard L. Bishop and published by Courier Corporation. This book was released on 2012-04-26 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div
Download or read book Tensor Calculus for Engineers and Physicists written by Emil de Souza Sánchez Filho and published by Springer. This book was released on 2016-05-20 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of n-dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without needing to resort to other bibliographical sources on tensors. Chapter 1 deals with Fundamental Concepts about tensors and chapter 2 is devoted to the study of covariant, absolute and contravariant derivatives. The chapters 3 and 4 are dedicated to the Integral Theorems and Differential Operators, respectively. Chapter 5 deals with Riemann Spaces, and finally the chapter 6 presents a concise study of the Parallelism of Vectors. It also shows how to solve various problems of several particular manifolds.
Download or read book Introduction to Tensor Analysis and the Calculus of Moving Surfaces written by Pavel Grinfeld and published by Springer Science & Business Media. This book was released on 2013-09-24 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.
Download or read book Matrices and Tensors in Physics written by A. W. Joshi and published by . This book was released on 1984 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Matrix and Tensor Decompositions in Signal Processing Volume 2 written by Gérard Favier and published by John Wiley & Sons. This book was released on 2021-08-17 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decompositions. After a brief historical review of the compressed sampling methods, an overview of the main methods of retrieving matrices and tensors with missing data will be performed under the low rank hypothesis. Illustrative examples will be provided.
Download or read book Tensor Algebra and Tensor Analysis for Engineers written by Mikhail Itskov and published by Springer Science & Business Media. This book was released on 2009-04-30 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a large gap between engineering courses in tensor algebra on one hand, and the treatment of linear transformations within classical linear algebra on the other. This book addresses primarily engineering students with some initial knowledge of matrix algebra. Thereby, mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises provided in the book are accompanied by solutions enabling autonomous study. The last chapters deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and might therefore be of high interest for PhD-students and scientists working in this area.
Download or read book Matrix Calculus And Kronecker Product A Practical Approach To Linear And Multilinear Algebra 2nd Edition written by Willi-hans Steeb and published by World Scientific Publishing Company. This book was released on 2011-03-24 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained and accessible introduction to linear and multilinear algebra. Besides the standard techniques for linear and multilinear algebra many advanced topics are included. Emphasis is placed on the Kronecker product and tensor product. The Kronecker product has widespread applications in signal processing, discrete wavelets, statistical physics, computer graphics, fractals, quantum mechanics and quantum computing. All these fields are covered in detail. A key feature of the book is the many detailed worked-out examples. Computer algebra applications are also given. Each chapter includes useful exercises. The book is well suited for pure and applied mathematicians as well as theoretical physicists and engineers.New topics added to the second edition are: braid-like relations, Clebsch-Gordan expansion, nearest Kronecker product, Clifford and Pauli group, universal enveloping algebra, computer algebra and Kronecker product.
Download or read book A Brief on Tensor Analysis written by James G. Simmonds and published by Springer Science & Business Media. This book was released on 2012-10-31 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this text which gradually develops the tools for formulating and manipulating the field equations of Continuum Mechanics, the mathematics of tensor analysis is introduced in four, well-separated stages, and the physical interpretation and application of vectors and tensors are stressed throughout. This new edition contains more exercises. In addition, the author has appended a section on Differential Geometry.