Download or read book Mathematics of Open Fluid Systems written by Eduard Feireisl and published by Springer Nature. This book was released on 2022-04-01 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this monograph is to develop a mathematical theory of open fluid systems in the framework of continuum thermodynamics. Part I discusses the difference between open and closed fluid systems and introduces the Navier-Stokes-Fourier system as the mathematical model of a fluid in motion that will be used throughout the text. A class of generalized solutions to the Navier-Stokes-Fourier system is considered in Part II in order to show existence of global-in-time solutions for any finite energy initial data, as well as to establish the weak-strong uniqueness principle. Finally, Part III addresses questions of asymptotic compactness and global boundedness of trajectories and briefly considers the statistical theory of turbulence and the validity of the ergodic hypothesis.
Download or read book Classical Thermodynamics of Fluid Systems written by Juan H. Vera and published by CRC Press. This book was released on 2016-11-25 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores the connections between different thermodynamic subjects related to fluid systems. Emphasis is placed on the clarification of concepts by returning to the conceptual foundation of thermodynamics and special effort is directed to the use of a simple nomenclature and algebra. The book presents the structural elements of classical thermodynamics of fluid systems, covers the treatment of mixtures, and shows via examples and references both the usefulness and the limitations of classical thermodynamics for the treatment of practical problems related to fluid systems. It also includes diverse selected topics of interest to researchers and advanced students and four practical appendices, including an introduction to material balances and step-by-step procedures for using the Virial EOS and the PRSV EOS for fugacities and the ASOG-KT group method for activity coefficients. The Olivera-Fuentes table of PRSV parameters for more than 800 chemical compounds and the Gmehling-Tochigi tables of ASOG interaction parameters for 43 groups are included.
Download or read book A Mathematical Introduction to Fluid Mechanics written by A. J. Chorin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on a one-quarter (i. e. very short) course in fluid mechanics taught in the Department of Mathematics of the University of California, Berkeley during the Spring of 1978. The goal of the course was not to provide an exhaustive account of fluid mechanics, nor to assess the engineering value of various approxima tion procedures. The goals were: (i) to present some of the basic ideas of fluid mechanics in a mathematically attractive manner (which does not mean "fully rigorous"); (ii) to present the physical back ground and motivation for some constructions which have been used in recent mathematical and numerical work on the Navier-Stokes equations and on hyperbolic systems; (iil. ) 'to interest some of the students in this beautiful and difficult subject. The notes are divided into three chapters. The first chapter contains an elementary derivation of the equations; the concept of vorticity is introduced at an early stage. The second chapter contains a discussion of potential flow, vortex motion, and boundary layers. A construction of boundary layers using vortex sheets and random walks is presented; it is hoped that it helps to clarify the ideas. The third chapter contains an analysis of one-dimensional gas iv flow, from a mildly modern point of view. Weak solutions, Riemann problems, Glimm's scheme, and combustion waves are discussed. The style is informal and no attempt was made to hide the authors' biases and interests.
Download or read book Mathematical Theory of Incompressible Nonviscous Fluids written by Carlo Marchioro and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid dynamics is an ancient science incredibly alive today. Modern technol ogy and new needs require a deeper knowledge of the behavior of real fluids, and new discoveries or steps forward pose, quite often, challenging and diffi cult new mathematical {::oblems. In this framework, a special role is played by incompressible nonviscous (sometimes called perfect) flows. This is a mathematical model consisting essentially of an evolution equation (the Euler equation) for the velocity field of fluids. Such an equation, which is nothing other than the Newton laws plus some additional structural hypo theses, was discovered by Euler in 1755, and although it is more than two centuries old, many fundamental questions concerning its solutions are still open. In particular, it is not known whether the solutions, for reasonably general initial conditions, develop singularities in a finite time, and very little is known about the long-term behavior of smooth solutions. These and other basic problems are still open, and this is one of the reasons why the mathe matical theory of perfect flows is far from being completed. Incompressible flows have been attached, by many distinguished mathe maticians, with a large variety of mathematical techniques so that, today, this field constitutes a very rich and stimulating part of applied mathematics.
Download or read book Interfacial Fluid Mechanics written by Vladimir S. Ajaev and published by Springer Science & Business Media. This book was released on 2012-02-07 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then, several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail. Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces,evaporation/condensation, and surfactant phenomena are discussed in the later chapters.
Download or read book Handbook of Mathematical Fluid Dynamics written by S. Friedlander and published by Gulf Professional Publishing. This book was released on 2003-03-27 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.
Download or read book Introduction to Mathematical Fluid Dynamics written by Richard E. Meyer and published by Courier Corporation. This book was released on 2012-03-08 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geared toward advanced undergraduate and graduate students in applied mathematics, engineering, and the physical sciences, this introductory text covers kinematics, momentum principle, Newtonian fluid, compressibility, and other subjects. 1971 edition.
Download or read book Geometrical Theory of Dynamical Systems and Fluid Flows revised Edition written by and published by World Scientific. This book was released on 2009 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is an introductory textbook on the geometrical theory of dynamical systems, fluid flows and certain integrable systems. The topics are interdisciplinary and extend from mathematics, mechanics and physics to mechanical engineering, and the approach is very fundamental. The main theme of this book is a unified formulation to understand dynamical evolutions of physical systems within mathematical ideas of Riemannian geometry and Lie groups by using well-known examples. Underlying mathematical concepts include transformation invariance, covariant derivative, geodesic equation and curvature tensors on the basis of differential geometry, theory of Lie groups and integrability. These mathematical theories are applied to physical systems such as free rotation of a top, surface wave of shallow water, action principle in mechanics, diffeomorphic flow of fluids, vortex motions and some integrable systems. In the latest edition, a new formulation of fluid flows is also presented in a unified fashion on the basis of the gauge principle of theoretical physics and principle of least action along with new type of Lagrangians. A great deal of effort has been directed toward making the description elementary, clear and concise, to provide beginners easy access to the topics."-
Download or read book Mathematical Theory of Compressible Fluid Flow written by Richard von Mises and published by Courier Corporation. This book was released on 2013-02-21 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: A pioneer in the fields of statistics and probability theory, Richard von Mises (1883–1953) made notable advances in boundary-layer-flow theory and airfoil design. This text on compressible flow, unfinished upon his sudden death, was subsequently completed in accordance with his plans, and von Mises' first three chapters were augmented with a survey of the theory of steady plane flow. Suitable as a text for advanced undergraduate and graduate students — as well as a reference for professionals — Mathematical Theory of Compressible Fluid Flow examines the fundamentals of high-speed flows, with detailed considerations of general theorems, conservation equations, waves, shocks, and nonisentropic flows. In this, the final work of his distinguished career, von Mises summarizes his extensive knowledge of a central branch of fluid mechanics. Characteristically, he pays particular attention to the basics, both conceptual and mathematical. The novel concept of a specifying equation clarifies the role of thermodynamics in the mechanics of compressible fluids. The general theory of characteristics receives a remarkably complete and simple treatment, with detailed applications, and the theory of shocks as asymptotic phenomena appears within the context of rational mechanics.
Download or read book Mathematical Theory of Compressible Viscous Fluids written by Eduard Feireisl and published by Birkhäuser. This book was released on 2016-11-25 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematics. It will help graduate students and researchers to not only better understand problems in mathematical compressible fluid mechanics but also to learn something from the field of mathematical and numerical analysis and to see the connections between the two worlds. Potential readers should possess a good command of the basic tools of functional analysis and partial differential equations including the function spaces of Sobolev type.
Download or read book A First Course in Fluid Dynamics written by A. R. Paterson and published by Cambridge University Press. This book was released on 1983-11-10 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the subject of fluid dynamics from the first principles.
Download or read book Mathematical Geophysics written by Jean-Yves Chemin and published by Oxford University Press. This book was released on 2006-04-13 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at graduate students and researchers in mathematics, engineering, oceanography, meteorology and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The Navier-Stokes equations are examined in both incompressible and rapidly rotating forms.
Download or read book An Introduction to Fluid Dynamics written by George Keith Batchelor and published by . This book was released on 1993 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Collected Papers in Honor of Yoshihiro Shibata written by Tohru Ozawa and published by Springer Nature. This book was released on 2023-01-01 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Yoshihiro Shibata has made many significant contributions to the area of mathematical fluid mechanics over the course of his illustrious career, including landmark work on the Navier-Stokes equations. The papers collected here — on the occasion of his 70th birthday — are written by world-renowned researchers and celebrate his decades of outstanding achievements.
Download or read book Basics of Fluid Mechanics written by Genick Bar-Meir and published by Orange Grove Texts Plus. This book was released on 2009-09-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the fundamentals of fluid mechanics phenomena for engineers and others. This book is designed to replace all introductory textbook(s) or instructor's notes for the fluid mechanics in undergraduate classes for engineering/science students but also for technical people. It is hoped that the book could be used as a reference book for people who have at least some basics knowledge of science areas such as calculus, physics, etc. This version is a PDF document. The website [http: //www.potto.org/FM/fluidMechanics.pdf ] contains the book broken into sections, and also has LaTeX resources
Download or read book Recent Developments of Mathematical Fluid Mechanics written by Herbert Amann and published by . This book was released on 2016 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Open Problems in Mathematics written by John Forbes Nash, Jr. and published by Springer. This book was released on 2018-05-31 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.