Download or read book Mathematical Modeling written by Christof Eck and published by Springer. This book was released on 2017-04-11 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.
Download or read book An Introduction to Mathematical Modeling written by Edward A. Bender and published by Courier Corporation. This book was released on 2012-05-23 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.
Download or read book Mathematical Structures of Epidemic Systems written by Vincenzo Capasso and published by Springer Science & Business Media. This book was released on 2008-08-06 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dynamics of infectious diseases represents one of the oldest and ri- est areas of mathematical biology. From the classical work of Hamer (1906) and Ross (1911) to the spate of more modern developments associated with Anderson and May, Dietz, Hethcote, Castillo-Chavez and others, the subject has grown dramatically both in volume and in importance. Given the pace of development, the subject has become more and more di?use, and the need to provide a framework for organizing the diversity of mathematical approaches has become clear. Enzo Capasso, who has been a major contributor to the mathematical theory, has done that in the present volume, providing a system for organizing and analyzing a wide range of models, depending on the str- ture of the interaction matrix. The ?rst class, the quasi-monotone or positive feedback systems, can be analyzed e?ectively through the use of comparison theorems, that is the theory of order-preserving dynamical systems; the s- ond, the skew-symmetrizable systems, rely on Lyapunov methods. Capasso develops the general mathematical theory, and considers a broad range of - amples that can be treated within one or the other framework. In so doing, he has provided the ?rst steps towards the uni?cation of the subject, and made an invaluable contribution to the Lecture Notes in Biomathematics. Simon A. Levin Princeton, January 1993 Author’s Preface to Second Printing In the Preface to the First Printing of this volume I wrote: \ . .
Download or read book Elementary Overview Of Mathematical Structures An Algebra Topology And Categories written by Marco Grandis and published by World Scientific. This book was released on 2020-08-12 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'The presentation is modeled on the discursive style of the Bourbaki collective, and the coverage of topics is rich and varied. Grandis has provided a large selection of exercises and has sprinkled orienting comments throughout. For an undergraduate library where strong students seek an overview of a significant portion of mathematics, this would be an excellent acquisition. Summing up: Recommended.'CHOICESince the last century, a large part of Mathematics is concerned with the study of mathematical structures, from groups to fields and vector spaces, from lattices to Boolean algebras, from metric spaces to topological spaces, from topological groups to Banach spaces.More recently, these structured sets and their transformations have been assembled in higher structures, called categories.We want to give a structural overview of these topics, where the basic facts of the different theories are unified through the 'universal properties' that they satisfy, and their particularities stand out, perhaps even more.This book can be used as a textbook for undergraduate studies and for self-study. It can provide students of Mathematics with a unified perspective of subjects which are often kept apart. It is also addressed to students and researchers of disciplines having strong interactions with Mathematics, like Physics and Chemistry, Statistics, Computer Science, Engineering.
Download or read book Mathematical Models for Elastic Structures written by Piero Villaggio and published by Cambridge University Press. This book was released on 1997-10-28 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the seventeenth century, several useful theories of elastic structures emerged, with applications to civil and mechanical engineering problems. Recent and improved mathematical tools have extended applications into new areas such as mathematical physics, geomechanics, and biomechanics. This book offers a critically filtered collection of the most significant theories dealing with elastic slender bodies. It includes mathematical models involving elastic structures that are used to solve practical problems with particular emphasis on nonlinear problems.
Download or read book Aspects of Mathematical Modelling written by Roger J. Hosking and published by Springer Science & Business Media. This book was released on 2008-03-02 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: The construction of mathematical models is an essential scientific activity. Mathematics is associated with developments in science and engineering, but more recently mathematical modelling has been used to investigate complex systems that arise in other fields. This book demonstrates the application of mathematics to research topics in ecology and environmental science, health and medicine, phylogenetics and neural networks, theoretical chemistry, economics and management.
Download or read book Mathematical Modeling and Simulation written by Kai Velten and published by John Wiley & Sons. This book was released on 2009-06-01 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).
Download or read book Mathematical Structures and Mathematical Modelling written by Isaak Moiseevich I͡Aglom and published by CRC Press. This book was released on 1986 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: A substantial amount of this book is devoted to general questions (including significant material from the history of science, allowing one to follow the formation of modern attitudes on the essence of mathematics and the methods of its applications): only chapters 5 and 6 are devoted to a survey of the basic algebraic structures and a more detailed analysis of a structure associated with some geometric considerations, are of a more concrete character.
Download or read book Principles of Mathematical Modeling written by Clive Dym and published by Elsevier. This book was released on 2004-08-10 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, and social decision making. Prospective students should have already completed courses in elementary algebra, trigonometry, and first-year calculus and have some familiarity with differential equations and basic physics. - Serves as an introductory text on the development and application of mathematical models - Focuses on techniques of particular interest to engineers, scientists, and others who model continuous systems - Offers more than 360 problems, providing ample opportunities for practice - Covers a wide range of interdisciplinary topics--from engineering to economics to the sciences - Uses straightforward language and explanations that make modeling easy to understand and apply New to this Edition: - A more systematic approach to mathematical modeling, outlining ten specific principles - Expanded and reorganized chapters that flow in an increasing level of complexity - Several new problems and updated applications - Expanded figure captions that provide more information - Improved accessibility and flexibility for teaching
- Author : Cornelis W Oosterlee
- Publisher : World Scientific
- Release : 2019-10-29
- ISBN : 1786347962
- Pages : 1310 pages
Mathematical Modeling And Computation In Finance With Exercises And Python And Matlab Computer Codes
Download or read book Mathematical Modeling And Computation In Finance With Exercises And Python And Matlab Computer Codes written by Cornelis W Oosterlee and published by World Scientific. This book was released on 2019-10-29 with total page 1310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.
Download or read book Principles of Mathematical Modelling written by Alexander A. Samarskii and published by CRC Press. This book was released on 2001-12-20 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modeling is becoming increasingly versatile and multi-disciplinary. This text demonstrates the broadness of this field as the authors consider the principles of model construction and use common approaches to build models from a range of subject areas. The book reflects the interests and experiences of the authors, but it explores mathematical modeling across a wide range of applications, from mechanics to social science. A general approach is adopted, where ideas and examples are favored over rigorous mathematical procedures. This insightful book will be of interest to specialists, teachers, and students across a wide range of disciplines..
Download or read book Mathematical Models for Structural Reliability Analysis written by Fabio Casciati and published by CRC Press. This book was released on 1996-07-24 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Models for Structural Reliability Analysis offers mathematical models for describing load and material properties in solving structural engineering problems. Examples are provided, demonstrating how the models are implemented, and the limitations of the models are clearly stated. Analytical solutions are also discussed, and methods are clearly distinguished from models. The authors explain both theoretical models and practical applications in a clear, concise, and readable fashion.
Download or read book Mathematical Modelling written by Seyed M. Moghadas and published by John Wiley & Sons. This book was released on 2018-07-24 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important resource that provides an overview of mathematical modelling Mathematical Modelling offers a comprehensive guide to both analytical and computational aspects of mathematical modelling that encompasses a wide range of subjects. The authors provide an overview of the basic concepts of mathematical modelling and review the relevant topics from differential equations and linear algebra. The text explores the various types of mathematical models, and includes a range of examples that help to describe a variety of techniques from dynamical systems theory. The book’s analytical techniques examine compartmental modelling, stability, bifurcation, discretization, and fixed-point analysis. The theoretical analyses involve systems of ordinary differential equations for deterministic models. The text also contains information on concepts of probability and random variables as the requirements of stochastic processes. In addition, the authors describe algorithms for computer simulation of both deterministic and stochastic models, and review a number of well-known models that illustrate their application in different fields of study. This important resource: Includes a broad spectrum of models that fall under deterministic and stochastic classes and discusses them in both continuous and discrete forms Demonstrates the wide spectrum of problems that can be addressed through mathematical modelling based on fundamental tools and techniques in applied mathematics and statistics Contains an appendix that reveals the overall approach that can be taken to solve exercises in different chapters Offers many exercises to help better understand the modelling process Written for graduate students in applied mathematics, instructors, and professionals using mathematical modelling for research and training purposes, Mathematical Modelling: A Graduate Textbook covers a broad range of analytical and computational aspects of mathematical modelling.
Download or read book Mathematical Models for Elastic Structures written by and published by Cambridge University Press. This book was released on with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematical Methods And Models In Composites written by Vladislav Mantic and published by World Scientific. This book was released on 2013-10-25 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics covered include: scaling and homogenization procedures in composite structures, thin plate and wave solutions in anisotropic materials, laminated structures, instabilities, fracture and damage analysis of composites, and highly efficient methods for simulation of composites manufacturing. The results presented are useful in the design, fabrication, testing, and industrial applications of composite components and structures. The book is written by well-known experts in different areas of applied mathematics, physics, and composite engineering and is an essential source of reference for graduate and doctoral students, as well as researchers. It is also suitable for non-experts in composites who wish to have an overview of both the mathematical methods and models used in this area and the related open problems requiring further research.
Download or read book Mathematical Modeling in Optical Science written by Gang Bao and published by SIAM. This book was released on 2001-01-01 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume addresses recent developments in mathematical modeling in three areas of optical science: diffractive optics, photonic band gap structures, and waveguides. Particular emphasis is on the formulation of mathematical models and the design and analysis of new computational approaches. The book contains cutting-edge discourses on emerging technology in optics that provides significant challenges and opportunities for applied mathematicians, researchers, and engineers. Each of the three topics is presented through a series of survey papers to provide a broad overview focusing on the mathematical models. Chapters present model problems, physical principles, mathematical and computational approaches, and engineering applications corresponding to each of the three areas. Although some of the subject matter is classical, the topics presented are new and represent the latest developments in their respective fields.
Download or read book Mathematical Modeling of Earth s Dynamical Systems written by Rudy Slingerland and published by Princeton University Press. This book was released on 2011-03-28 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html