EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mathematical Modelling and Biomechanics of the Brain

Download or read book Mathematical Modelling and Biomechanics of the Brain written by Corina Drapaca and published by Springer Nature. This book was released on 2019-09-06 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph aims to provide a rigorous yet accessible presentation of some fundamental concepts used in modeling brain mechanics and give a glimpse of the insights and advances that have arisen as a result of the nascent interaction of the mathematical and neurosurgical sciences. It begins with some historical perspective and a brief synopsis of the biomedical/biological manifestations of the clinical conditions/diseases considered. Each chapter proceeds with a discussion of the various mathematical models of the problems considered, starting with the simplest models and proceeding to more complex models where necessary. A detailed list of relevant references is provided at the end of each chapter. With the beginning research student in mind, the chapters have been crafted to be as self-contained as possible while addressing different clinical conditions and diseases. The book is intended as a brief introduction to both theoreticians and experimentalists interested in brain mechanics, with directions and guidance for further reading, for those who wish to pursue particular topics in greater depth. It can also be used as a complementary textbook in a graduate level course for neuroscientists and neuroengineers.

Book Biomechanics of the Brain

Download or read book Biomechanics of the Brain written by Karol Miller and published by Springer. This book was released on 2019-08-08 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition presents an authoritative account of the current state of brain biomechanics research for engineers, scientists and medical professionals. Since the first edition in 2011, this topic has unquestionably entered into the mainstream of biomechanical research. The book brings together leading scientists in the diverse fields of anatomy, neuroimaging, image-guided neurosurgery, brain injury, solid and fluid mechanics, mathematical modelling and computer simulation to paint an inclusive picture of the rapidly evolving field. Covering topics from brain anatomy and imaging to sophisticated methods of modeling brain injury and neurosurgery (including the most recent applications of biomechanics to treat epilepsy), to the cutting edge methods in analyzing cerebrospinal fluid and blood flow, this book is the comprehensive reference in the field. Experienced researchers as well as students will find this book useful.

Book Applied Biomechatronics Using Mathematical Models

Download or read book Applied Biomechatronics Using Mathematical Models written by Jorge Garza Ulloa and published by Academic Press. This book was released on 2018-06-16 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Biomechatronics Using Mathematical Models provides an appropriate methodology to detect and measure diseases and injuries relating to human kinematics and kinetics. It features mathematical models that, when applied to engineering principles and techniques in the medical field, can be used in assistive devices that work with bodily signals. The use of data in the kinematics and kinetics analysis of the human body, including musculoskeletal kinetics and joints and their relationship to the central nervous system (CNS) is covered, helping users understand how the complex network of symbiotic systems in the skeletal and muscular system work together to allow movement controlled by the CNS. With the use of appropriate electronic sensors at specific areas connected to bio-instruments, we can obtain enough information to create a mathematical model for assistive devices by analyzing the kinematics and kinetics of the human body. The mathematical models developed in this book can provide more effective devices for use in aiding and improving the function of the body in relation to a variety of injuries and diseases. - Focuses on the mathematical modeling of human kinematics and kinetics - Teaches users how to obtain faster results with these mathematical models - Includes a companion website with additional content that presents MATLAB examples

Book Mathematical Models in Biology

Download or read book Mathematical Models in Biology written by Valeria Zazzu and published by Springer. This book was released on 2015-11-26 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an exciting collection of contributions based on the workshop “Bringing Maths to Life” held October 27-29, 2014 in Naples, Italy. The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content useful as it addresses existing challenges in identifying the gaps between mathematical modeling and biological research. The shared solutions will aid and promote further collaboration between life sciences and mathematics.

Book Mathematical Foundations and Biomechanics of the Digestive System

Download or read book Mathematical Foundations and Biomechanics of the Digestive System written by Roustem N. Miftahof and published by Cambridge University Press. This book was released on 2010-05-06 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modelling of physiological systems promises to advance our understanding of complex biological phenomena and pathophysiology of diseases. In this book, the authors adopt a mathematical approach to characterize and explain the functioning of the gastrointestinal system. Using the mathematical foundations of thin shell theory, the authors patiently and comprehensively guide the reader through the fundamental theoretical concepts, via step-by-step derivations and mathematical exercises, from basic theory to complex physiological models. Applications to nonlinear problems related to the biomechanics of abdominal viscera and the theoretical limitations are discussed. Special attention is given to questions of complex geometry of organs, effects of boundary conditions on pellet propulsion, as well as to clinical conditions, e.g. functional dyspepsia, intestinal dysrhythmias and the effect of drugs to treat motility disorders. With end of chapter problems, this book is ideal for bioengineers and applied mathematicians.

Book Biomechanics  Trends in Modeling and Simulation

Download or read book Biomechanics Trends in Modeling and Simulation written by Gerhard A. Holzapfel and published by Springer. This book was released on 2016-09-14 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls and the myocardium are discussed and the important influence of residual stresses on material response emphasized. The mechanics and function of the heart, the brain and adipose tissues are discussed as well. Particular attention is focused on microstructural and multi-scale modeling, finite element implementation and simulation of cells and tissues.

Book Mathematics for Neuroscientists

Download or read book Mathematics for Neuroscientists written by Fabrizio Gabbiani and published by Academic Press. This book was released on 2017-02-04 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. - Fully revised material and corrected text - Additional chapters on extracellular potentials, motion detection and neurovascular coupling - Revised selection of exercises with solutions - More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts

Book Computational Biomechanics

    Book Details:
  • Author : Kozaburo Hayashi
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 4431669515
  • Pages : 278 pages

Download or read book Computational Biomechanics written by Kozaburo Hayashi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combination of readily available computing power and progress in numerical techniques has made nonlinear systems - the kind that only a few years ago were ignored as too complex - open to analysis for the first time. Now realistic models of living systems incorporating the nonlinear variation and anisotropic nature of physical properties can be solved numerically on modern computers to give realistically usable results. This has opened up new and exciting possibilities for the fusing of ideas from physiology and engineering in the burgeoning new field that is biomechanics. Computational Biomechanics presents pioneering work focusing on the areas of orthopedic and circulatory mechanics, using experimental results to confirm or improve the relevant mathematical models and parameters. Together with two companion volumes, Biomechanics: Functional Adaptation and Remodeling and the Data Book on Mechanical Properties of Living Cells, Tissues, and Organs, this monograph will prove invaluable to those working in fields ranging from medical science and clinical medicine to biomedical engineering and applied mechanics.

Book Neural Tissue Biomechanics

Download or read book Neural Tissue Biomechanics written by Lynne E. Bilston and published by Springer Science & Business Media. This book was released on 2011-07-23 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Damage to the central nervous system resulting from pathological mechanical loading can occur as a result of trauma or disease. Such injuries lead to significant disability and mortality. The peripheral nervous system, while also subject to injury from trauma and disease, also transduces physiological loading to give rise to sensation, and mechanotransduction is also thought to play a role in neural development and growth. This book gives a complete and quantitative description of the fundamental mechanical properties of neural tissues, and their responses to both physiological and pathological loading. This book reviews the methods used to characterize the nonlinear viscoelastic properties of central and peripheral neural tissues, and the mathematical and sophisticated computational models used to describe this behaviour. Mechanisms and models of neural injury from both trauma and disease are reviewed from the molecular to macroscopic scale. The book provides a comprehensive picture of the mechanical and biological response of neural tissues to the full spectrum of mechanical loading to which they are exposed. This book provides a comprehensive reference for professionals involved in pre prevention of injury to the nervous system, whether this arises from trauma or disease.

Book Neuronal Mechanics and Transport

Download or read book Neuronal Mechanics and Transport written by Daniel M. Suter and published by Frontiers Media SA. This book was released on 2016-05-26 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the underlying mechanisms of how axons and dendrites develop is a fundamental problem in neuroscience and a main goal of research on nervous system development and regeneration. Previous studies have provided a tremendous amount of information on signaling and cytoskeletal proteins regulating axonal and dendritic growth and guidance. However, relatively little is known about the relative contribution and role of cytoskeletal dynamics, transport of organelles and cytoskeletal components, and force generation to axonal elongation. Advancing the knowledge of these biomechanical processes is critical to better understand the development of the nervous system, the pathological progression of neurodegenerative diseases, acute traumatic injury, and for designing novel approaches to promote neuronal regeneration following disease, stroke, or trauma. Mechanical properties and forces shape the development of the nervous system from the cellular up to the organ level. Recent advances in quantitative live cell imaging, biophysical, and nanotechnological methods such as traction force microscopy, optical tweezers, and atomic force microscopy have enabled researchers to gain better insights into how cytoskeletal dynamics and motor-driven transport, membrane-dynamics, adhesion, and substrate rigidity influence axonal elongation. Given the complexity and mechanical nature of this problem, mathematical modeling contributes significantly to our understanding of neuronal mechanics. Nonetheless, there has been limited direct interaction and discussions between experimentalists and theoreticians in this research area. The purpose of this Frontiers Research Topic is to highlight exciting, and important work that is currently developing in the fields of neuronal cell biology, neuronal mechanics, intracellular transport, and mathematical modeling in the form of primary research articles, reviews, perspectives, and commentaries.

Book Mathematical Models and Computer Simulations for Biomedical Applications

Download or read book Mathematical Models and Computer Simulations for Biomedical Applications written by Gabriella Bretti and published by Springer Nature. This book was released on 2023-09-17 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modelling and computer simulations are playing a crucial role in the solution of the complex problems arising in the field of biomedical sciences and provide a support to clinical and experimental practices in an interdisciplinary framework. Indeed, the development of mathematical models and efficient numerical simulation tools is of key importance when dealing with such applications. Moreover, since the parameters in biomedical models have peculiar scientific interpretations and their values are often unknown, accurate estimation techniques need to be developed for parameter identification against the measured data of observed phenomena. In the light of the new challenges brought by the biomedical applications, computational mathematics paves the way for the validation of the mathematical models and the investigation of control problems. The volume hosts high-quality selected contributions containing original research results as well as comprehensive papers and survey articles including prospective discussion focusing on some topical biomedical problems. It is addressed, but not limited to: research institutes, academia, and pharmaceutical industries.

Book Continuum Modeling in Mechanobiology

Download or read book Continuum Modeling in Mechanobiology written by Larry A. Taber and published by Springer Nature. This book was released on 2020-06-15 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines key theoretical tools that are currently used to develop mathematical models as an aid in understanding the biological response of cells and tissues to mechanical stimuli. Problems in growth and remodeling, tissue and organ development, and functional adaptation are all covered. Chapters on tensor analysis and nonlinear elasticity provide the necessary background for understanding the engineering theories that are currently used to solve challenges in mechanobiology. This is an ideal book for biomechanical engineers who work on problems in mechanobiology and tissue engineering.

Book Interdisciplinary Topics in Applied Mathematics  Modeling and Computational Science

Download or read book Interdisciplinary Topics in Applied Mathematics Modeling and Computational Science written by Monica G. Cojocaru and published by Springer. This book was released on 2015-07-03 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26—30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics and its areas of applications.

Book The Mathematics and Mechanics of Biological Growth

Download or read book The Mathematics and Mechanics of Biological Growth written by Alain Goriely and published by Springer. This book was released on 2017-05-29 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a general mathematical theory for biological growth. It provides both a conceptual and a technical foundation for the understanding and analysis of problems arising in biology and physiology. The theory and methods are illustrated on a wide range of examples and applications. A process of extreme complexity, growth plays a fundamental role in many biological processes and is considered to be the hallmark of life itself. Its description has been one of the fundamental problems of life sciences, but until recently, it has not attracted much attention from mathematicians, physicists, and engineers. The author herein presents the first major technical monograph on the problem of growth since D’Arcy Wentworth Thompson’s 1917 book On Growth and Form. The emphasis of the book is on the proper mathematical formulation of growth kinematics and mechanics. Accordingly, the discussion proceeds in order of complexity and the book is divided into five parts. First, a general introduction on the problem of growth from a historical perspective is given. Then, basic concepts are introduced within the context of growth in filamentary structures. These ideas are then generalized to surfaces and membranes and eventually to the general case of volumetric growth. The book concludes with a discussion of open problems and outstanding challenges. Thoughtfully written and richly illustrated to be accessible to readers of varying interests and background, the text will appeal to life scientists, biophysicists, biomedical engineers, and applied mathematicians alike.

Book Biomechanics of Living Organs

Download or read book Biomechanics of Living Organs written by Yohan Payan and published by World Bank Publications. This book was released on 2017-06-09 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling is the first book to cover finite element biomechanical modeling of each organ in the human body. This collection of chapters from the leaders in the field focuses on the constitutive laws for each organ. Each author introduces the state-of-the-art concerning constitutive laws and then illustrates the implementation of such laws with Finite Element Modeling of these organs. The focus of each chapter is on instruction, careful derivation and presentation of formulae, and methods. When modeling tissues, this book will help users determine modeling parameters and the variability for particular populations. Chapters highlight important experimental techniques needed to inform, motivate, and validate the choice of strain energy function or the constitutive model. Remodeling, growth, and damage are all covered, as is the relationship of constitutive relationships of organs to tissue and molecular scale properties (as net organ behavior depends fundamentally on its sub components). This book is intended for professionals, academics, and students in tissue and continuum biomechanics. Covers hyper elastic frameworks for large tissue deformations Considers which strain energy functions are the most appropriate to model the passive and active states of living tissue Evaluates the physical meaning of proposed energy functions

Book Brains  Machines  and Mathematics

Download or read book Brains Machines and Mathematics written by Michael A. Arbib and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book whose time has come-again. The first edition (published by McGraw-Hill in 1964) was written in 1962, and it celebrated a number of approaches to developing an automata theory that could provide insights into the processing of information in brainlike machines, making it accessible to readers with no more than a college freshman's knowledge of mathematics. The book introduced many readers to aspects of cybernetics-the study of computation and control in animal and machine. But by the mid-1960s, many workers abandoned the integrated study of brains and machines to pursue artificial intelligence (AI) as an end in itself-the programming of computers to exhibit some aspects of human intelligence, but with the emphasis on achieving some benchmark of performance rather than on capturing the mechanisms by which humans were themselves intelligent. Some workers tried to use concepts from AI to model human cognition using computer programs, but were so dominated by the metaphor "the mind is a computer" that many argued that the mind must share with the computers of the 1960s the property of being serial, of executing a series of operations one at a time. As the 1960s became the 1970s, this trend continued. Meanwhile, experi mental neuroscience saw an exploration of new data on the anatomy and physiology of neural circuitry, but little of this research placed these circuits in the context of overall behavior, and little was informed by theoretical con cepts beyond feedback mechanisms and feature detectors.

Book Mathematical Modelling in Biomedicine

Download or read book Mathematical Modelling in Biomedicine written by Vitaly Volpert and published by MDPI. This book was released on 2021-01-26 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modelling in biomedicine is a rapidly developing scientific discipline at the intersection of medicine, biology, mathematics, physics, and computer science. Its progress is stimulated by fundamental scientific questions and by the applications to public health. This book represents a collection of papers devoted to mathematical modelling of various physiological problems in normal and pathological conditions. It covers a broad range of topics including cardiovascular system and diseases, heart and brain modelling, tumor growth, viral infections, and immune response. Computational models of blood circulation are used to study the influence of heart arrhythmias on coronary blood flow and on operating modes for left-ventricle-assisted devices. Wave propagation in the cardiac tissue is investigated in order to show the influence of tissue heterogeneity and fibrosis. The models of tumor growth are used to determine optimal protocols of antiangiogenic and radiotherapy. The models of viral hepatitis kinetics are considered for the parameter identification, and the evolution of viral quasi-species is investigated. The book presents the state-of-the-art in mathematical modelling in biomedicine and opens new perspectives in this passionate field of research.