Download or read book Mathematical Methods in Optimization of Differential Systems written by Viorel Barbu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is a revised and enlarged edition of a book with the same title published in Romanian by the Publishing House of the Romanian Academy in 1989. It grew out of lecture notes for a graduate course given by the author at the University if Ia~i and was initially intended for students and readers primarily interested in applications of optimal control of ordinary differential equations. In this vision the book had to contain an elementary description of the Pontryagin maximum principle and a large number of examples and applications from various fields of science. The evolution of control science in the last decades has shown that its meth ods and tools are drawn from a large spectrum of mathematical results which go beyond the classical theory of ordinary differential equations and real analy ses. Mathematical areas such as functional analysis, topology, partial differential equations and infinite dimensional dynamical systems, geometry, played and will continue to play an increasing role in the development of the control sciences. On the other hand, control problems is a rich source of deep mathematical problems. Any presentation of control theory which for the sake of accessibility ignores these facts is incomplete and unable to attain its goals. This is the reason we considered necessary to widen the initial perspective of the book and to include a rigorous mathematical treatment of optimal control theory of processes governed by ordi nary differential equations and some typical problems from theory of distributed parameter systems.
Download or read book Partial Differential Equations with Numerical Methods written by Stig Larsson and published by Springer Science & Business Media. This book was released on 2008-12-05 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.
Download or read book Variational Methods in Optimization written by Donald R. Smith and published by Courier Corporation. This book was released on 1998-01-01 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highly readable text elucidates applications of the chain rule of differentiation, integration by parts, parametric curves, line integrals, double integrals, and elementary differential equations. 1974 edition.
Download or read book Optimization of Elliptic Systems written by Pekka Neittaanmaki and published by Springer Science & Business Media. This book was released on 2007-01-04 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present monograph is intended to provide a comprehensive and accessible introduction to the optimization of elliptic systems. This area of mathematical research, which has many important applications in science and technology. has experienced an impressive development during the past two decades. There are already many good textbooks dealing with various aspects of optimal design problems. In this regard, we refer to the works of Pironneau [1984], Haslinger and Neittaanmaki [1988], [1996], Sokolowski and Zolksio [1992], Litvinov [2000], Allaire [2001], Mohammadi and Pironneau [2001], Delfour and Zolksio [2001], and Makinen and Haslinger [2003]. Already Lions [I9681 devoted a major part of his classical monograph on the optimal control of partial differential equations to the optimization of elliptic systems. Let us also mention that even the very first known problem of the calculus of variations, the brachistochrone studied by Bernoulli back in 1696. is in fact a shape optimization problem. The natural richness of this mathematical research subject, as well as the extremely large field of possible applications, has created the unusual situation that although many important results and methods have already been est- lished, there are still pressing unsolved questions. In this monograph, we aim to address some of these open problems; as a consequence, there is only a minor overlap with the textbooks already existing in the field.
Download or read book Optimal Control of Partial Differential Equations written by Fredi Tröltzsch and published by American Mathematical Society. This book was released on 2024-03-21 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. The methods have found widespread applications in aeronautics, mechanical engineering, the life sciences, and many other disciplines. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. Included are topics such as the existence of optimal solutions, necessary optimality conditions and adjoint equations, second-order sufficient conditions, and main principles of selected numerical techniques. It also contains a survey on the Karush-Kuhn-Tucker theory of nonlinear programming in Banach spaces. The exposition begins with control problems with linear equations, quadratic cost functions and control constraints. To make the book self-contained, basic facts on weak solutions of elliptic and parabolic equations are introduced. Principles of functional analysis are introduced and explained as they are needed. Many simple examples illustrate the theory and its hidden difficulties. This start to the book makes it fairly self-contained and suitable for advanced undergraduates or beginning graduate students. Advanced control problems for nonlinear partial differential equations are also discussed. As prerequisites, results on boundedness and continuity of solutions to semilinear elliptic and parabolic equations are addressed. These topics are not yet readily available in books on PDEs, making the exposition also interesting for researchers. Alongside the main theme of the analysis of problems of optimal control, Tröltzsch also discusses numerical techniques. The exposition is confined to brief introductions into the basic ideas in order to give the reader an impression of how the theory can be realized numerically. After reading this book, the reader will be familiar with the main principles of the numerical analysis of PDE-constrained optimization.
Download or read book Mathematical Methods and Models for Economists written by Angel de la Fuente and published by Cambridge University Press. This book was released on 2000-01-28 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook for a first-year PhD course in mathematics for economists and a reference for graduate students in economics.
Download or read book Reduced Basis Methods for Partial Differential Equations written by Alfio Quarteroni and published by Springer. This book was released on 2015-08-19 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit
Download or read book Structural Dynamic Systems Computational Techniques and Optimization written by Cornelius T. Leondes and published by CRC Press. This book was released on 1999-01-27 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite element, an approximation method for solving differential equations of mathematical physics, is a highly effective technique in the analysis and design, or synthesis, of structural dynamic systems. Starting from the system differential equations and its boundary conditions, what is referred to as a weak form of the problem (elaborated in the text) is developed in a variational sense. This variational statement is used to define elemental properties that may be written as matrices and vectors as well as to identify primary and secondary boundaries and all possible boundary conditions. Specific equilibrium problems are also solved. This book clearly reveals the effectiveness and great significance of the finite element method available and the essential role it will play in the future as further development occurs.
Download or read book Real time PDE constrained Optimization written by Lorenz T. Biegler and published by SIAM. This book was released on 2007-01-01 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.
Download or read book Optimization Theory for Large Systems written by Leon S. Lasdon and published by Courier Corporation. This book was released on 2002-01-01 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Important text examines most significant algorithms for optimizing large systems and clarifying relations between optimization procedures. Much data appear as charts and graphs and will be highly valuable to readers in selecting a method and estimating computer time and cost in problem-solving. Initial chapter on linear and nonlinear programming presents all necessary background for subjects covered in rest of book. Second chapter illustrates how large-scale mathematical programs arise from real-world problems. Appendixes. List of Symbols.
Download or read book Computer Methods for Ordinary Differential Equations and Differential Algebraic Equations written by Uri M. Ascher and published by SIAM. This book was released on 1998-08-01 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains all the material necessary for a course on the numerical solution of differential equations.
Download or read book Control and Optimization with Differential Algebraic Constraints written by Lorenz T. Biegler and published by SIAM. This book was released on 2012-11-01 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: A cutting-edge guide to modelling complex systems with differential-algebraic equations, suitable for applied mathematicians, engineers and computational scientists.
Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Download or read book Differential Dynamical Systems Revised Edition written by James D. Meiss and published by SIAM. This book was released on 2017-01-24 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Download or read book Control Systems and Mathematical Methods in Economics written by Gustav Feichtinger and published by Springer. This book was released on 2018-06-08 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the days of Lev Pontryagin and his associates, the discipline of Optimal Control has enjoyed a tremendous upswing – not only in terms of its mathematical foundations, but also with regard to numerous fields of application, which have given rise to highly active research areas. Few scholars, however, have been able to make contributions to both the mathematical developments and the (socio-)economic applications; Vladimir Veliov is one of them. In the course of his scientific career, he has contributed highly influential research on mathematical aspects of Optimal Control Theory, as well as applications in Economics and Operations Research. One of the hallmarks of his research is its impressive breadth. This volume, published on the occasion of his 65th birthday, accurately reflects that diversity. The mathematical aspects covered include stability theory for difference inclusions, metric regularity, generalized duality theory, the Bolza problem from a functional analytic perspective, and fractional calculus. In turn, the book explores various applications of control theory, such as population dynamics, population economics, epidemiology, optimal growth theory, resource and energy economics, environmental management, and climate change. Further topics include optimal liquidity, dynamics of the firm, and wealth inequality.
Download or read book Recent Advances in Differential Equations and Control Theory written by Concepción Muriel and published by Springer Nature. This book was released on 2021-03-13 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects the latest results and new trends in the application of mathematics to some problems in control theory, numerical simulation and differential equations. The work comprises the main results presented at a thematic minisymposium, part of the 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019), held in Valencia, Spain, from 15 to 18 July 2019. The topics covered in the 6 peer-review contributions involve applications of numerical methods to real problems in oceanography and naval engineering, as well as relevant results on switching control techniques, which can have multiple applications in industrial complexes, electromechanical machines, biological systems, etc. Problems in control theory, as in most engineering problems, are modeled by differential equations, for which standard solving procedures may be insufficient. The book also includes recent geometric and analytical methods for the search of exact solutions for differential equations, which serve as essential tools for analyzing problems in many scientific disciplines.
Download or read book Optimization and Control for Partial Differential Equations written by Roland Herzog and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-03-07 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.