Download or read book Mathematical Methods in Image Processing and Inverse Problems written by Xue-Cheng Tai and published by Springer Nature. This book was released on 2021-09-25 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains eleven original and survey scientific research articles arose from presentations given by invited speakers at International Workshop on Image Processing and Inverse Problems, held in Beijing Computational Science Research Center, Beijing, China, April 21–24, 2018. The book was dedicated to Professor Raymond Chan on the occasion of his 60th birthday. The contents of the book cover topics including image reconstruction, image segmentation, image registration, inverse problems and so on. Deep learning, PDE, statistical theory based research methods and techniques were discussed. The state-of-the-art developments on mathematical analysis, advanced modeling, efficient algorithm and applications were presented. The collected papers in this book also give new research trends in deep learning and optimization for imaging science. It should be a good reference for researchers working on related problems, as well as for researchers working on computer vision and visualization, inverse problems, image processing and medical imaging.
Download or read book Computational Methods for Inverse Problems in Imaging written by Marco Donatelli and published by Springer Nature. This book was released on 2019-11-26 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent mathematical methods in the area of inverse problems in imaging with a particular focus on the computational aspects and applications. The formulation of inverse problems in imaging requires accurate mathematical modeling in order to preserve the significant features of the image. The book describes computational methods to efficiently address these problems based on new optimization algorithms for smooth and nonsmooth convex minimization, on the use of structured (numerical) linear algebra, and on multilevel techniques. It also discusses various current and challenging applications in fields such as astronomy, microscopy, and biomedical imaging. The book is intended for researchers and advanced graduate students interested in inverse problems and imaging.
Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Download or read book Computational Methods for Inverse Problems written by Curtis R. Vogel and published by SIAM. This book was released on 2002-01-01 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.
Download or read book Mathematical Image Processing written by Kristian Bredies and published by Springer. This book was released on 2019-02-06 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the mathematical aspects of modern image processing methods, with a special emphasis on the underlying ideas and concepts. It discusses a range of modern mathematical methods used to accomplish basic imaging tasks such as denoising, deblurring, enhancing, edge detection and inpainting. In addition to elementary methods like point operations, linear and morphological methods, and methods based on multiscale representations, the book also covers more recent methods based on partial differential equations and variational methods. Review of the German Edition: The overwhelming impression of the book is that of a very professional presentation of an appropriately developed and motivated textbook for a course like an introduction to fundamentals and modern theory of mathematical image processing. Additionally, it belongs to the bookcase of any office where someone is doing research/application in image processing. It has the virtues of a good and handy reference manual. (zbMATH, reviewer: Carl H. Rohwer, Stellenbosch)
Download or read book Mathematical Methods in Image Reconstruction written by Frank Natterer and published by SIAM. This book was released on 2001-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a superior understanding of the mathematical principles behind imaging.
Download or read book Discrete Inverse Problems written by Per Christian Hansen and published by SIAM. This book was released on 2010-01-01 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the practical treatment of inverse problems by means of numerical methods, with a focus on basic mathematical and computational aspects. To solve inverse problems, we demonstrate that insight about them goes hand in hand with algorithms.
Download or read book Inverse Problem Theory and Methods for Model Parameter Estimation written by Albert Tarantola and published by SIAM. This book was released on 2005-01-01 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.
Download or read book Inverse Problems written by Alexander G. Ramm and published by Springer Science & Business Media. This book was released on 2005-12-19 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse Problems is a monograph which contains a self-contained presentation of the theory of several major inverse problems and the closely related results from the theory of ill-posed problems. The book is aimed at a large audience which include graduate students and researchers in mathematical, physical, and engineering sciences and in the area of numerical analysis.
Download or read book Methods for Solving Inverse Problems in Mathematical Physics written by Global Express Ltd. Co. and published by CRC Press. This book was released on 2000-03-21 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developing an approach to the question of existence, uniqueness and stability of solutions, this work presents a systematic elaboration of the theory of inverse problems for all principal types of partial differential equations. It covers up-to-date methods of linear and nonlinear analysis, the theory of differential equations in Banach spaces, applications of functional analysis, and semigroup theory.
Download or read book Statistical and Computational Inverse Problems written by Jari Kaipio and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the statistical mechanics approach to computational solution of inverse problems, an innovative area of current research with very promising numerical results. The techniques are applied to a number of real world applications such as limited angle tomography, image deblurring, electical impedance tomography, and biomagnetic inverse problems. Contains detailed examples throughout and includes a chapter on case studies where such methods have been implemented in biomedical engineering.
Download or read book Introduction to Inverse Problems in Imaging written by M. Bertero and published by CRC Press. This book was released on 2020-08-30 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate textbook on the principles of linear inverse problems, methods of their approximate solution, and practical application in imaging. The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of readers from different backgrounds in science and engineering. Mathematical prerequisites are first courses in analysis, geometry, linear algebra, probability theory, and Fourier analysis. The authors concentrate on presenting easily implementable and fast solution algorithms. With examples and exercises throughout, the book will provide the reader with the appropriate background for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems.
Download or read book An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems written by Luis Tenorio and published by SIAM. This book was released on 2017-07-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.
Download or read book Fixed Point Algorithms for Inverse Problems in Science and Engineering written by Heinz H. Bauschke and published by Springer Science & Business Media. This book was released on 2011-05-27 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.
Download or read book Numerical Methods for Inverse Problems written by Michel Kern and published by John Wiley & Sons. This book was released on 2016-06-07 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies methods to concretely address inverse problems. An inverse problem arises when the causes that produced a given effect must be determined or when one seeks to indirectly estimate the parameters of a physical system. The author uses practical examples to illustrate inverse problems in physical sciences. He presents the techniques and specific methods chosen to solve inverse problems in a general domain of application, choosing to focus on a small number of methods that can be used in most applications. This book is aimed at readers with a mathematical and scientific computing background. Despite this, it is a book with a practical perspective. The methods described are applicable, have been applied, and are often illustrated by numerical examples.
Download or read book Surveys on Solution Methods for Inverse Problems written by David Colton and published by Springer Science & Business Media. This book was released on 2000-05-23 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems are concerned with determining causes for observed or desired effects. Problems of this type appear in many application fields both in science and in engineering. The mathematical modelling of inverse problems usually leads to ill-posed problems, i.e., problems where solutions need not exist, need not be unique or may depend discontinuously on the data. For this reason, numerical methods for solving inverse problems are especially difficult, special methods have to be developed which are known under the term "regularization methods". This volume contains twelve survey papers about solution methods for inverse and ill-posed problems and about their application to specific types of inverse problems, e.g., in scattering theory, in tomography and medical applications, in geophysics and in image processing. The papers have been written by leading experts in the field and provide an up-to-date account of solution methods for inverse problems.
Download or read book Parameter Estimation and Inverse Problems written by Richard C. Aster and published by Elsevier. This book was released on 2018-10-16 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more. - Features examples that are illustrated with simple, easy to follow problems that illuminate the details of a particular numerical method - Includes an online instructor's guide that helps professors teach and customize exercises and select homework problems - Covers updated information on adjoint methods that are presented in an accessible manner