EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mathematical Methods for Curves and Surfaces

Download or read book Mathematical Methods for Curves and Surfaces written by Morten Dæhlen and published by Springer Science & Business Media. This book was released on 2010-03-02 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Mathematical Methods for Curves and Surfaces, MMCS 2008, held in Tønsberg, Norway, in June/July 2008. The 28 revised full papers presented were carefully reviewed and selected from 129 talks presented at the conference. The topics addressed by the papers range from mathematical analysis of various methods to practical implementation on modern graphics processing units.

Book Curves and Surfaces

    Book Details:
  • Author : M. Abate
  • Publisher : Springer Science & Business Media
  • Release : 2012-06-11
  • ISBN : 8847019419
  • Pages : 407 pages

Download or read book Curves and Surfaces written by M. Abate and published by Springer Science & Business Media. This book was released on 2012-06-11 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to Differential Geometry of Curves and Surfaces. The theory of curves starts with a discussion of possible definitions of the concept of curve, proving in particular the classification of 1-dimensional manifolds. We then present the classical local theory of parametrized plane and space curves (curves in n-dimensional space are discussed in the complementary material): curvature, torsion, Frenet’s formulas and the fundamental theorem of the local theory of curves. Then, after a self-contained presentation of degree theory for continuous self-maps of the circumference, we study the global theory of plane curves, introducing winding and rotation numbers, and proving the Jordan curve theorem for curves of class C2, and Hopf theorem on the rotation number of closed simple curves. The local theory of surfaces begins with a comparison of the concept of parametrized (i.e., immersed) surface with the concept of regular (i.e., embedded) surface. We then develop the basic differential geometry of surfaces in R3: definitions, examples, differentiable maps and functions, tangent vectors (presented both as vectors tangent to curves in the surface and as derivations on germs of differentiable functions; we shall consistently use both approaches in the whole book) and orientation. Next we study the several notions of curvature on a surface, stressing both the geometrical meaning of the objects introduced and the algebraic/analytical methods needed to study them via the Gauss map, up to the proof of Gauss’ Teorema Egregium. Then we introduce vector fields on a surface (flow, first integrals, integral curves) and geodesics (definition, basic properties, geodesic curvature, and, in the complementary material, a full proof of minimizing properties of geodesics and of the Hopf-Rinow theorem for surfaces). Then we shall present a proof of the celebrated Gauss-Bonnet theorem, both in its local and in its global form, using basic properties (fully proved in the complementary material) of triangulations of surfaces. As an application, we shall prove the Poincaré-Hopf theorem on zeroes of vector fields. Finally, the last chapter will be devoted to several important results on the global theory of surfaces, like for instance the characterization of surfaces with constant Gaussian curvature, and the orientability of compact surfaces in R3.

Book Mathematical Methods for Curves and Surfaces

Download or read book Mathematical Methods for Curves and Surfaces written by Michael Floater and published by Springer. This book was released on 2017-10-17 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the thoroughly refereed post-conference proceedings of the 9th International Conference on Mathematical Methods for Curves and Surfaces, MMCS 2016, held in Tønsberg, Norway, in June 2016. The 17 revised full papers presented were carefully reviewed and selected from 115 submissions. The topics range from mathematical theory to industrial applications.

Book Mathematical Methods for Curves and Surfaces

Download or read book Mathematical Methods for Curves and Surfaces written by Michael Floater and published by Springer. This book was released on 2014-02-03 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the thoroughly refereed post-conference proceedings of the 8th International Conference on Mathematical Methods for Curves and Surfaces, MMCS 2012, held in Oslo, Norway, in June/July 2012. The 28 revised full papers presented were carefully reviewed and selected from 135 submissions. The topics range from mathematical analysis of various methods to practical implementation on modern graphics processing units. The papers reflect the newest developments in these fields and also point to the latest literature.

Book Curves and Surfaces for Computer Graphics

Download or read book Curves and Surfaces for Computer Graphics written by David Salomon and published by Springer Science & Business Media. This book was released on 2007-03-20 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Requires only a basic knowledge of mathematics and is geared toward the general educated specialists. Includes a gallery of color images and Mathematica code listings.

Book Mathematical Methods for Curves and Surfaces

Download or read book Mathematical Methods for Curves and Surfaces written by Morten Dæhlen and published by Springer. This book was released on 2010-02-12 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Mathematical Methods for Curves and Surfaces, MMCS 2008, held in Tønsberg, Norway, in June/July 2008. The 28 revised full papers presented were carefully reviewed and selected from 129 talks presented at the conference. The topics addressed by the papers range from mathematical analysis of various methods to practical implementation on modern graphics processing units.

Book CRC Standard Curves and Surfaces

Download or read book CRC Standard Curves and Surfaces written by David H. von Seggern and published by CRC Press. This book was released on 1992-12-15 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: CRC Standard Curves and Surfaces is a comprehensive illustrated catalog of curves and surfaces of geometric figures and algebraic, transcendental, and integral equations used in elementary and advanced mathematics. More than 800 graphics images are featured. Based on the successful CRC Handbook of Mathematical Curves and Surfaces, this new volume retains the easy to use "catalog" format of the original book. Illustrations are presented in a common format organized by type of equation. Associated equations are printed in their simplest form along with any notes required to understand the illustrations. Equations and graphics appear in a side-by-side format, with figures printed on righthand pages and text on lefthand pages. Most curves and surfaces are plotted with several parameter selections so that the variation of the mathematical functions are easily understandable. Coverage on algebraic surfaces and transcendental surfaces has been expanded by 30% over the original edition; material on functions in mathematical physics has expanded by 50%. New material on functions of random processes and functions of complex variable surfaces has been added. A complementary software program (see the next title listed in this catalog) enables you to plot all of the functions found in this book.

Book Differential Geometry of Curves and Surfaces

Download or read book Differential Geometry of Curves and Surfaces written by Shoshichi Kobayashi and published by Springer Nature. This book was released on 2019-11-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. Berkeley for 50 years, recently translated by Eriko Shinozaki Nagumo and Makiko Sumi Tanaka. There are five chapters: 1. Plane Curves and Space Curves; 2. Local Theory of Surfaces in Space; 3. Geometry of Surfaces; 4. Gauss–Bonnet Theorem; and 5. Minimal Surfaces. Chapter 1 discusses local and global properties of planar curves and curves in space. Chapter 2 deals with local properties of surfaces in 3-dimensional Euclidean space. Two types of curvatures — the Gaussian curvature K and the mean curvature H —are introduced. The method of the moving frames, a standard technique in differential geometry, is introduced in the context of a surface in 3-dimensional Euclidean space. In Chapter 3, the Riemannian metric on a surface is introduced and properties determined only by the first fundamental form are discussed. The concept of a geodesic introduced in Chapter 2 is extensively discussed, and several examples of geodesics are presented with illustrations. Chapter 4 starts with a simple and elegant proof of Stokes’ theorem for a domain. Then the Gauss–Bonnet theorem, the major topic of this book, is discussed at great length. The theorem is a most beautiful and deep result in differential geometry. It yields a relation between the integral of the Gaussian curvature over a given oriented closed surface S and the topology of S in terms of its Euler number χ(S). Here again, many illustrations are provided to facilitate the reader’s understanding. Chapter 5, Minimal Surfaces, requires some elementary knowledge of complex analysis. However, the author retained the introductory nature of this book and focused on detailed explanations of the examples of minimal surfaces given in Chapter 2.

Book Mathematical Methods for Curves and Surfaces

Download or read book Mathematical Methods for Curves and Surfaces written by Tom Lyche and published by . This book was released on 2001 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This volume contains a carefully refereed and edited selection of papers that were presented at the Oslo Conference on Mathematical Methods for Curves and Surfaces in July 2000. It contains several invited surveys written by leading experts in the field, along with contributed research papers on the most current developments in the theory and application of curves and surfaces."--Page 4 de la couverture.

Book Designing Fair Curves and Surfaces

Download or read book Designing Fair Curves and Surfaces written by Nickolas S. Sapidis and published by SIAM. This book was released on 1994-01-01 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This state-of-the-art study of the techniques used for designing curves and surfaces for computer-aided design applications focuses on the principle that fair shapes are always free of unessential features and are simple in design. The authors define fairness mathematically, demonstrate how newly developed curve and surface schemes guarantee fairness, and assist the user in identifying and removing shape aberrations in a surface model without destroying the principal shape characteristics of the model. Aesthetic aspects of geometric modeling are of vital importance in industrial design and modeling, particularly in the automobile and aerospace industries. Any engineer working in computer-aided design, computer-aided manufacturing, or computer-aided engineering will want to add this volume to his or her library. Researchers who have a familiarity with basic techniques in computer-aided graphic design and some knowledge of differential geometry will find this book a helpful reference. It is essential reading for statisticians working on approximation or smoothing of data with mathematical curves or surfaces.

Book Differential Geometry Of Curves And Surfaces

Download or read book Differential Geometry Of Curves And Surfaces written by Masaaki Umehara and published by World Scientific Publishing Company. This book was released on 2017-05-12 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'In a class populated by students who already have some exposure to the concept of a manifold, the presence of chapter 3 in this text may make for an unusual and interesting course. The primary function of this book will be as a text for a more conventional course in the classical theory of curves and surfaces.'MAA ReviewsThis engrossing volume on curve and surface theories is the result of many years of experience the authors have had with teaching the most essential aspects of this subject. The first half of the text is suitable for a university-level course, without the need for referencing other texts, as it is completely self-contained. More advanced material in the second half of the book, including appendices, also serves more experienced students well.Furthermore, this text is also suitable for a seminar for graduate students, and for self-study. It is written in a robust style that gives the student the opportunity to continue his study at a higher level beyond what a course would usually offer. Further material is included, for example, closed curves, enveloping curves, curves of constant width, the fundamental theorem of surface theory, constant mean curvature surfaces, and existence of curvature line coordinates.Surface theory from the viewpoint of manifolds theory is explained, and encompasses higher level material that is useful for the more advanced student. This includes, but is not limited to, indices of umbilics, properties of cycloids, existence of conformal coordinates, and characterizing conditions for singularities.In summary, this textbook succeeds in elucidating detailed explanations of fundamental material, where the most essential basic notions stand out clearly, but does not shy away from the more advanced topics needed for research in this field. It provides a large collection of mathematically rich supporting topics. Thus, it is an ideal first textbook in this field.

Book Modeling of Curves and Surfaces with MATLAB

Download or read book Modeling of Curves and Surfaces with MATLAB written by Vladimir Rovenski and published by Springer Science & Business Media. This book was released on 2010-06-10 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB® including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.

Book Differential Geometry

    Book Details:
  • Author : Wolfgang Kühnel
  • Publisher : American Mathematical Soc.
  • Release : 2006
  • ISBN : 0821839888
  • Pages : 394 pages

Download or read book Differential Geometry written by Wolfgang Kühnel and published by American Mathematical Soc.. This book was released on 2006 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.

Book Visual Motion of Curves and Surfaces

Download or read book Visual Motion of Curves and Surfaces written by Roberto Cipolla and published by Cambridge University Press. This book was released on 2000 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision aims to detect and reconstruct features of surfaces from the images produced by cameras, in some way mimicking the way in which humans reconstruct features of the world around them by using their eyes. In this book the authors describe research in computer vision aimed at recovering the 3D shape of surfaces from image sequences of their 'outlines'. They provide all the necessary background in differential geometry (assuming knowledge of elementary algebra and calculus) and in the analysis of visual motion, emphasising intuitive visual understanding of the geometric techniques with computer-generated illustrations. They also give a thorough introduction to the mathematical techniques and the details of the implementations and apply the methods to data from real images using the most current techniques.

Book Implicit Curves and Surfaces  Mathematics  Data Structures and Algorithms

Download or read book Implicit Curves and Surfaces Mathematics Data Structures and Algorithms written by Abel Gomes and published by Springer Science & Business Media. This book was released on 2009-05-12 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implicit objects have gained increasing importance in geometric modeling, visualisation, animation, and computer graphics, because their geometric properties provide a good alternative to traditional parametric objects. This book presents the mathematics, computational methods and data structures, as well as the algorithms needed to render implicit curves and surfaces, and shows how implicit objects can easily describe smooth, intricate, and articulatable shapes, and hence why they are being increasingly used in graphical applications. Divided into two parts, the first introduces the mathematics of implicit curves and surfaces, as well as the data structures suited to store their sampled or discrete approximations, and the second deals with different computational methods for sampling implicit curves and surfaces, with particular reference to how these are applied to functions in 2D and 3D spaces.

Book Curves and Surfaces for CAGD

Download or read book Curves and Surfaces for CAGD written by Gerald E. Farin and published by Morgan Kaufmann. This book was released on 2002 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preface -- Chapter 1 P. B̌ezier: How a Simple System Was Born -- Chapter 2 Introductory Material -- Chapter 3 Linear Interpolation -- Chapter 4 The de Casteljau Algorithm -- Chapter 5 The Bernstein Form of a B̌ezier Curve -- Chapter 6 B̌ezier Curve Topics -- Chapter 7 Polynomial Curve Constructions -- Chapter 8 B-Spline Curves -- Chapter 9 Constructing Spline Curves -- Chapter 10 W. Boehm: Differential Geometry I -- Chapter 11 Geometric Continuity -- Chapter 12 ConicSections -- Chapter 13 Rational B̌ezier and B-Spline Curves -- Chapter 14 Tensor Product Patches -- Chapter 15 Constructing Polynomial Patches -- Chapter 16 Composite Surfaces -- Chapter 17 B̌ezier Triangles -- Chapter 18 Practical Aspects of B̌ezier Triangles -- Chapter 19 W. Boehm: Differential Geometry II -- Chapter 20 GeometricContinuityforSurfaces -- Chapter 21 Surfaces with Arbitrary Topology -- Chapter 22 Coons Patches -- Chapter 23 Shape -- Chapter 24 Evaluation of Some Methods -- Appendix A Quick Reference of Curve ...

Book Curve and Surface Reconstruction

Download or read book Curve and Surface Reconstruction written by Tamal K. Dey and published by Cambridge University Press. This book was released on 2006-10-16 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to scan such objects and generate point samples on their boundaries. This book, first published in 2007, shows how to compute a digital model from this point sample. After developing the basics of sampling theory and its connections to various geometric and topological properties, the author describes a suite of algorithms that have been designed for the reconstruction problem, including algorithms for surface reconstruction from dense samples, from samples that are not adequately dense and from noisy samples. Voronoi- and Delaunay-based techniques, implicit surface-based methods and Morse theory-based methods are covered. Scientists and engineers working in drug design, medical imaging, CAD, GIS, and many other areas will benefit from this first book on the subject.