EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mathematical Logic for Computer Science

Download or read book Mathematical Logic for Computer Science written by Mordechai Ben-Ari and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a mathematics textbook with theorems and proofs. The choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. In order to provide a balanced treatment of logic, tableaux are related to deductive proof systems. The book presents various logical systems and contains exercises. Still further, Prolog source code is available on an accompanying Web site. The author is an Associate Professor at the Department of Science Teaching, Weizmann Institute of Science.

Book Mathematical Logic For Computer Science  2nd Edition

Download or read book Mathematical Logic For Computer Science 2nd Edition written by Zhongwan Lu and published by World Scientific. This book was released on 1998-08-22 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical logic is essentially related to computer science. This book describes the aspects of mathematical logic that are closely related to each other, including classical logic, constructive logic, and modal logic. This book is intended to attend to both the peculiarities of logical systems and the requirements of computer science.In this edition, the revisions essentially involve rewriting the proofs, increasing the explanations, and adopting new terms and notations.

Book Concrete Mathematics

    Book Details:
  • Author : Ronald L. Graham
  • Publisher : Addison-Wesley Professional
  • Release : 1994-02-28
  • ISBN : 0134389980
  • Pages : 811 pages

Download or read book Concrete Mathematics written by Ronald L. Graham and published by Addison-Wesley Professional. This book was released on 1994-02-28 with total page 811 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.

Book Logic for Computer Scientists

Download or read book Logic for Computer Scientists written by Uwe Schöning and published by Springer Science & Business Media. This book was released on 2009-11-03 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the notions and methods of formal logic from a computer science standpoint, covering propositional logic, predicate logic, and foundations of logic programming. The classic text is replete with illustrative examples and exercises. It presents applications and themes of computer science research such as resolution, automated deduction, and logic programming in a rigorous but readable way. The style and scope of the work, rounded out by the inclusion of exercises, make this an excellent textbook for an advanced undergraduate course in logic for computer scientists.

Book A Friendly Introduction to Mathematical Logic

Download or read book A Friendly Introduction to Mathematical Logic written by Christopher C. Leary and published by Lulu.com. This book was released on 2015 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.

Book Logic in Computer Science

Download or read book Logic in Computer Science written by Michael Huth and published by . This book was released on 2004-08-26 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a sound basis in logic, and introduces logical frameworks used in modelling, specifying and verifying computer systems.

Book A Mathematical Introduction to Logic

Download or read book A Mathematical Introduction to Logic written by Herbert B. Enderton and published by Elsevier. This book was released on 2001-01-23 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Mathematical Introduction to Logic

Book Logic for Computer Science

Download or read book Logic for Computer Science written by Jean H. Gallier and published by Courier Dover Publications. This book was released on 2015-06-18 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in first-order logic; SLD-resolution, logic programming, and the foundations of PROLOG; and many-sorted first-order logic. Numerous problems appear throughout the book, and two Appendixes provide practical background information.

Book Mathematical Logic through Python

Download or read book Mathematical Logic through Python written by Yannai A. Gonczarowski and published by Cambridge University Press. This book was released on 2022-07-31 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using a unique pedagogical approach, this text introduces mathematical logic by guiding students in implementing the underlying logical concepts and mathematical proofs via Python programming. This approach, tailored to the unique intuitions and strengths of the ever-growing population of programming-savvy students, brings mathematical logic into the comfort zone of these students and provides clarity that can only be achieved by a deep hands-on understanding and the satisfaction of having created working code. While the approach is unique, the text follows the same set of topics typically covered in a one-semester undergraduate course, including propositional logic and first-order predicate logic, culminating in a proof of Gödel's completeness theorem. A sneak peek to Gödel's incompleteness theorem is also provided. The textbook is accompanied by an extensive collection of programming tasks, code skeletons, and unit tests. Familiarity with proofs and basic proficiency in Python is assumed.

Book Mathematical Logic

    Book Details:
  • Author : H.-D. Ebbinghaus
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-14
  • ISBN : 1475723555
  • Pages : 290 pages

Download or read book Mathematical Logic written by H.-D. Ebbinghaus and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.

Book Basic Proof Theory

    Book Details:
  • Author : A. S. Troelstra
  • Publisher : Cambridge University Press
  • Release : 2000-07-27
  • ISBN : 9780521779111
  • Pages : 436 pages

Download or read book Basic Proof Theory written by A. S. Troelstra and published by Cambridge University Press. This book was released on 2000-07-27 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much more complex settings. There are numerous exercises throughout the text. In general, the only prerequisite is a standard course in first-order logic, making the book ideal for graduate students and beginning researchers in mathematical logic, theoretical computer science and artificial intelligence. For the new edition, many sections have been rewritten to improve clarity, new sections have been added on cut elimination, and solutions to selected exercises have been included.

Book Logic for Applications

    Book Details:
  • Author : Anil Nerode
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1468402110
  • Pages : 383 pages

Download or read book Logic for Applications written by Anil Nerode and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: In writing this book, our goal was to produce a text suitable for a first course in mathematical logic more attuned than the traditional textbooks to the recent dramatic growth in the applications of logic to computer science. Thus our choice of topics has been heavily influenced by such applications. Of course, we cover the basic traditional topics - syntax, semantics, soundness, completeness and compactness - as well as a few more advanced results such as the theorems of Skolem-Lowenheim and Herbrand. Much of our book, however, deals with other less traditional topics. Resolution theorem proving plays a major role in our treatment of logic, especially in its application to Logic Programming and PROLOG. We deal extensively with the mathematical foundations of all three of these subjects. In addition, we include two chapters on nonclassical logic- modal and intuitionistic - that are becoming increasingly important in computer science. We develop the basic material on the syntax and se mantics (via Kripke frames) for each of these logics. In both cases, our approach to formal proofs, soundness and completeness uses modifications of the same tableau method introduced for classical logic. We indicate how it can easily be adapted to various other special types of modal log ics. A number of more advanced topics (including nonmonotonic logic) are also briefly introduced both in the nonclassical logic chapters and in the material on Logic Programming and PROLOG.

Book Mathematical Logic

    Book Details:
  • Author : Ian Chiswell
  • Publisher : OUP Oxford
  • Release : 2007-05-18
  • ISBN : 0191524808
  • Pages : 258 pages

Download or read book Mathematical Logic written by Ian Chiswell and published by OUP Oxford. This book was released on 2007-05-18 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't be calculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assuming Matiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics and computer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in Logic, Mathematics, Philosophy, and Computer Science.

Book Logic of Mathematics

    Book Details:
  • Author : Zofia Adamowicz
  • Publisher : John Wiley & Sons
  • Release : 2011-09-26
  • ISBN : 1118030796
  • Pages : 276 pages

Download or read book Logic of Mathematics written by Zofia Adamowicz and published by John Wiley & Sons. This book was released on 2011-09-26 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough, accessible, and rigorous presentation of the central theorems of mathematical logic . . . ideal for advanced students of mathematics, computer science, and logic Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems: * Gödel's theorems of completeness and incompleteness * The independence of Goodstein's theorem from Peano arithmetic * Tarski's theorem on real closed fields * Matiyasevich's theorem on diophantine formulas Logic of Mathematics also features: * Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types * Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-Löwenheim constructions and other topics * Carefully chosen exercises for each chapter, plus helpful solution hints At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms. Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, Gödel's completeness theorem, models of Peano arithmetic, and much more. Part II focuses on a number of advanced theorems that are central to the field, such as Gödel's first and second theorems of incompleteness, the independence proof of Goodstein's theorem from Peano arithmetic, Tarski's theorem on real closed fields, and others. No other text contains complete and precise proofs of all of these theorems. With a solid and comprehensive program of exercises and selected solution hints, Logic of Mathematics is ideal for classroom use-the perfect textbook for advanced students of mathematics, computer science, and logic.

Book A Course in Mathematical Logic for Mathematicians

Download or read book A Course in Mathematical Logic for Mathematicians written by Yu. I. Manin and published by Springer Science & Business Media. This book was released on 2009-10-13 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.

Book Sets  Logic and Maths for Computing

Download or read book Sets Logic and Maths for Computing written by David Makinson and published by Springer Science & Business Media. This book was released on 2012-02-27 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This easy-to-follow textbook introduces the mathematical language, knowledge and problem-solving skills that undergraduates need to study computing. The language is in part qualitative, with concepts such as set, relation, function and recursion/induction; but it is also partly quantitative, with principles of counting and finite probability. Entwined with both are the fundamental notions of logic and their use for representation and proof. Features: teaches finite math as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear confusions; provides numerous exercises, with selected solutions.

Book Mathematical Logic

    Book Details:
  • Author : R.O. Gandy
  • Publisher : Elsevier
  • Release : 2001-12-05
  • ISBN : 0080535925
  • Pages : 307 pages

Download or read book Mathematical Logic written by R.O. Gandy and published by Elsevier. This book was released on 2001-12-05 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Logic is a collection of the works of one of the leading figures in 20th-century science. This collection of A.M. Turing's works is intended to include all his mature scientific writing, including a substantial quantity of unpublished material. His work in pure mathematics and mathematical logic extended considerably further; the work of his last years, on morphogenesis in plants, is also of the greatest originality and of permanent importance. This book is divided into three parts. The first part focuses on computability and ordinal logics and covers Turing's work between 1937 and 1938. The second part covers type theory; it provides a general introduction to Turing's work on type theory and covers his published and unpublished works between 1941 and 1948. Finally, the third part focuses on enigmas, mysteries, and loose ends. This concluding section of the book discusses Turing's Treatise on the Enigma, with excerpts from the Enigma Paper. It also delves into Turing's papers on programming and on minimum cost sequential analysis, featuring an excerpt from the unpublished manuscript. This book will be of interest to mathematicians, logicians, and computer scientists.